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Abstract 
Before assimilating the radiance of the geostationary imager into the assimilation 
system, correctly characterizing the bias can effectively improve the accuracy of 
numerical weather prediction. The ARMS fast radiative transfer model is used to 
simulate the brightness temperature of the AGRI infrared channel with the ECMWF 
reanalysis data ERA5 as input, and to characterize the deviation between the simulated 
brightness temperature and the observed brightness temperature under clear sky 
conditions (observed brightness temperature - simulated brightness temperature), 
which is AGRI The product is applied to prepare for assimilation provided. The results 
show that the deviations of each channel on land and sea are less than 2K and 1.5K 
respectively. Channels 11-13 have more pronounced deviation differences between land 
and sea than the rest of the channels. After fitting by linear regression, there is no 
obvious dependence of each channel on the scanning angle on the sea surface. All 
channels have a dependence on the observed brightness temperature. 
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1. Introduction 

In recent years, a new generation of geostationary meteorological satellites has developed rapidly, 
and geostationary meteorological satellite data are playing an increasingly important role in 
monitoring disastrous weather, air pollution, surface solar irradiance and assimilating data for 
numerical weather prediction[1]. The three-axis stabilized FY-4A satellite is the first in a series of 
China's new generation of geostationary weather satellites. It was launched on December 11, 2016 
and officially delivered on September 25, 2017. It is located at 104.7°E above the equator and at an 
altitude of 35,786 kilometers. FY-4A is equipped with the Advanced Geostationary Radiation 
Imager[2] (Advanced Geostationary Radiation Imager, AGRI), the Interferometric Atmospheric 
Vertical Sounder[3] (Geostationary Interferometric Infrared Sounder, GIIRS) and the Lightning 
Imager[4] (Lightning Mapping Imager, LMI). AGRI is similar to the Himarari Imager on the Japanese 
satellite Himawari-8[5] and the Advanced Baseline Imager (ABI) on the US geostationary weather 
satellite[6]. Among them, AGRI launched a number of new products such as cloud liquid water, 
aerosol optical depth, surface temperature and convection induction, providing more complete 
applications and services. 

Geostationary imager observations are applied to identify and track rapidly changing weather 
phenomena and infer quantitative products that are critical for weather services and timely forecasting 
applications. Visible, shortwave infrared, and thermal infrared radiation information detected by 
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geostationary imagers can be used to retrieve cloud information such as optical thickness, effective 
particle radius, and cloud top properties[7]. Cloud attribute products are widely used in cloud process 
monitoring[8], rainfall probability inversion[9], disastrous weather forecast[10], etc. In addition to 
conventional applications, using machine learning methods, stationary infrared observations can be 
directly applied to the study of meteorological conditions, such as total precipitation[11], tropical 
thunderstorm[12], quantitative precipitation estimation[13], etc. What is more striking is that the 
research on radiation assimilation of geostationary infrared observations is gradually expanding and 
deepening from clear-sky observations to all-sky observations[14]. Ouellet[15] assimilated the water 
vapor-sensitive infrared brightness temperature observations of the Advanced Baseline Imager (ABI) 
into the data assimilation research test bench set data assimilation system, and found that not only in 
the 3D water distribution, but also in the cloud, temperature The wind field has also been improved. 
Yang[16] first assimilated the imager radiance data on a US geostationary weather satellite using an 
assimilation system with a hybrid 3D EnVar scheme, and had a certain significant positive impact on 
the convective permit forecast for Mexico. Other studies[17] have also shown that geosynchronous 
infrared radiation assimilation systems can have a positive impact on precipitation forecasting skills. 
In the past ten years, many achievements have been made in the assimilation of all-sky synchrotron 
infrared radiation, and significant progress has been made in the forecasting of rapidly changing 
weather systems (such as typhoons, precipitation, floods, etc.)[18]. 

For atmospheric parameter inversion and numerical weather prediction (Numerical Weather 
Prediction, NWP), the calibration and verification of geostationary imager observations are the first 
key conditions. Furthermore, it is critical to correctly quantify biases and errors before assimilating 
geostationary imager radiance rates into a data assimilation system, as biases between satellite 
observation information and background field data can reduce the accuracy of numerical weather 
prediction[19]. A common approach to assess the discrepancy between satellite observations and 
model simulations is to simulate brightness temperatures using reanalysis data and radiative transfer 
models[20]. 

So far, AGRI infrared channel bias assessment in selected areas has been studied based on 
assimilation of forecast model data from synoptic studies and radiative studies from ARMS[21]. 
However, there is no assessment of the bias characterization of AGRI infrared emissions based on 
FY-4A satellite observations and MODIS cloud mask products. In this paper, ARMS is used as the 
radiative transfer model, and the fifth-generation atmospheric reanalysis data set ERA5 of the 
European Center for Medium-Range Weather Forecasts (ECMWF) is used as the model input to 
obtain the deviation between observation and simulation, so as to characterize the selected The 
deviation of the AGRI infrared band of the FY-4A star in the Dinghai land area provides preparations 
for the application of AGRI products to the forecast model data assimilation. 

2. Data and Method 

2.1 Data Preprocessing 

In this paper, the ERA5 data is used as the input data of the ARMS model, and the brightness 
temperature of the AGRI infrared channel is simulated; then the deviation is obtained by subtracting 
the simulated data from the AGRI observation data; finally, the deviation distribution is analyzed. 
Download the ERA5 data with a horizontal resolution of 0.1°×0.1° and a time resolution of 1h through 
the API interface. Because the spatial and temporal resolutions of ERA5 data and AGRI observation 
data are different, before the simulation, the ERA5 data is interpolated to the space-time grid of AGRI 
observation by bilinear interpolation in space and inverse weight interpolation in time. Since this 
paper focuses on the deviation analysis of the AGRI infrared channel under clear sky conditions, the 
MODIS cloud product is selected to perform cloud detection on the simulation results. The AGRI 
data and MODIS data in August 2018 were selected for screening, and the data with clouds and 
possible clouds in the AGRI data were eliminated, and then the deviation analysis with the simulation 
results was carried out. 
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2.2 Method 

The ARMS rapid transfer transfer model simulates the radiation observed by satellite sensors by 
solving the radiative transfer equation for the observed atmospheric conditions. The radiative transfer 
equation under clear-sky conditions is given by equation (1): 
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s

    and   are the transmittance from the surface and the model layer to the top of the 

atmosphere, respectively; ( , )
s
    is the surface emissivity; T  is the average temperature between 

the model layers; T
s  is the surface temperature; ( , )B T  represents the Planck function when the 

temperature is T . 

Based on the ARMS model, the basic flow chart of AGRI infrared brightness temperature simulation 
with ECMWF ERA5 data as model input is shown in Figure 1. ERA5 provides atmospheric profiles 
for temperature, pressure and water vapor, as well as wind, surface temperature, pressure and 
humidity. Extract geometric variables such as longitude, latitude, satellite and solar zenith angles 
from AGRI data. The above atmospheric conditions and geometric variables are transformed into 
simulated brightness temperatures through the ARMS model. Bias properties can be assessed by 
comparing the difference between simulated and observed brightness temperatures. 

 

 

Figure 1. Flow chart of AGRI infrared brightness temperature simulation based on ARMS 

3. Results and Analysis 

3.1 Distribution of Sea-land Deviation 

The brightness temperature simulated with ERA5 as data input, the spatial deviation distribution of 
the land surface and the ocean surface in the selected area is represented by a heat map (Fig. Hue 
represents a negative value, and the darker the color, the greater the deviation. Figure 2 presents the 
spatial distribution of brightness temperature deviations of AGRI infrared channels 8-14 over land 
and sea. The positive and negative deviations of AGRI infrared channel 8 are mostly in the range of 
1K in the range of sea and land, and only a few areas have negative deviations of about 2K. The 
deviation of AGRI water vapor channel 9 in the selected area is almost all negative deviation, there 
is a negative deviation of 1~2K on the ocean surface, and a negative deviation of about 1K on the 
land surface. The situation of channel 10 and channel 9 is similar, only there is a positive deviation 
in the range of 1K from 30°N to 40°N. Channels 11-13 have roughly the same spatial distribution of 
deviations in the entire selected area, with negative deviations within 1K on the ocean surface and 
positive deviations within 1K on land. The deviation of channel 14 on the sea and land surfaces is 
almost always a positive deviation within 1K, and only some areas have a negative deviation of about 
1K. 
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Figure 2. Spatial distribution of sea-land deviation of brightness temperature 

 

Figure 3 shows the spatial mean deviation and standard deviation of the simulated brightness 
temperature based on Era5 data when the satellite zenith angle is less than 60°. As shown in Fig. 
3(a)and(c), the positive and negative deviation trends of each channel are consistent on land and sea, 
that is, the deviation of near-surface channels 11-13 is negative, while the deviation of the remaining 
channels is positive. The largest deviations over land and ocean are at 1.34 K in channel 8 and 1.49 
K in channel 14, respectively. As shown in Fig. 3(b)and(d), the standard deviation of each channel 
on the land is larger than that on the ocean. The standard deviation for channel 8 is highest over both 
land and sea, indicating that channel 8 has the most spread out distribution of deviations. Moreover, 
the standard deviation of channels 11-13 on the land surface is significantly higher than that of 
channels 9-10 and channel 14 3-4 K, and this feature is not found on the ocean. The bias and standard 
deviation for channels 9–10 had the smallest difference over ocean and land (the bias and standard 
deviation over land and ocean were less than 0.15 K and 1.2 K, respectively). The deviation and 
standard deviation of channels 9-10 are significantly smaller than those of other channels over land 
and sea, mainly due to the influence of tropospheric water vapor and temperature profiles. Over 
oceans and land, there is less difference in the upper and middle tropospheres. 

 

 
Figure 3. Land and Sea Deviation and Standard Deviation Statistics 

3.2 The Effect of the satellite zenith Angle on the Deviation 

Scan-related biases can be found in satellite radiation observations due to the scan pattern resulting 
in different scan angles within the scan line[22]. Therefore, further investigation into whether these 
scan-dependent biases are present in AGRI observations is warranted. Since sensor zenith angle can 
be converted to scan angle, scan correlation bias can be converted to the relationship between sensor 
zenith angle and bias. Figure 4 illustrates the variation of the bias and standard deviation with respect 
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to the satellite zenith angle and the amount of data for 0.1° intervals over the ocean. The shaded part 
in Fig. 4(b) represents the observation counts at intervals of 0.1°. It can be seen that the number of 
observations with a zenith angle below 10° is small, and the observations are mainly concentrated 
between 10° and 60°. As can be seen in Figure 4(a), the deviations of channels 8, 10 and 11 change 
from negative to positive with the increase of the satellite zenith angle, and the deviation values are 
concentrated at 1 K, 0.5 K and 1.3 K. The deviation formula of channel 9 is positive and fluctuates 
around 1K. The deviation of channels 11-13 is always negative throughout the whole process, and 
the deviation gradually decreases with the increase of the satellite zenith angle from 0° to 20°, but 
after 20°, the deviation fluctuates less, maintaining at -0.5 K to -1 K between. Therefore, the satellite 
zenith angle has a negligible effect on the bias. As shown in the legend on the right of Fig. 4, except 
for channel 8, the AGRI channel deviation has no significant dependence on the satellite zenith angle. 
Except between 20° and 30°, the standard deviations of the 8 channels of other angles vary drastically 
with the satellite zenith angle. The main reason may be that channel 8 is in the mid-wave infrared 
band, which is more susceptible to the scattering or reflection of solar short-wave radiation in the 
daytime when the satellite zenith angle is large[23]. The standard deviations of the rest of the channels 
are concentrated in the range of 1-2 K, except that there may be small fluctuations between 20° and 
30°, the fluctuations in other places are not large. The small fluctuation within 0~10° may be due to 
the small amount of data, which is obviously less than that in other places. 

 

 
Figure 4. Dependence of Channels 8-14 Over the Ocean on the Satellite Zenith Angle 

 

Figure 5 shows the dependence of the bias and standard deviation of AGRI channels 8–14 on the 
satellite zenith angle over land and the data counts at 0.1° intervals over land. As shown in Figure 
5(a), channel 8 and channel 11 have the largest deviation changes, with deviation changes of 4 K and 
4.5 K, respectively, and the deviations of the other channels are all less than 3K. All channels show 
positive deviation in the range of satellite zenith angle from 38° to 45°, and channels 11-13 show 
negative deviation in the range of 23° to 35°. As shown in Fig. 5(b), the standard deviations of 
channels 9, 10, and 14 are significantly smaller than those of the rest of the channels, and the peak 
values of the standard deviations of all channels are in the range of 35° to 40°. Comparing Figures 
4 and 5, it can be found that the variation of the deviation over the land is significantly greater than 
that over the ocean, and the difference in standard deviation of the water vapor channels 9-10 over 
the ocean is greater than that over the land. On land, RTTOV surface emissivity simulates brightness 
temperature using a surface emissivity lookup table to generate emissivity as a function of 
wavenumber, latitude and longitude, and month. Therefore, the complex surface type and albedo may 
not be fully considered in the surface emissivity model, which may cause the sensitive channels on 
the surface to be affected by the observation angle when receiving radiation, while the water vapor 
channels 9-10 and carbon dioxide channel 14 are less affected, because this Several channels mainly 
receive radiation from the middle and upper troposphere. 
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Figure 5. Dependence of Channels 8-14 Over the Land on the Satellite Zenith Angle 

 

Among them, in order to quantify the correlation of all channels, this paper performs linear regression 
fitting between the deviation and the satellite zenith angle. Table 1 provides details on the fitted 
coefficients. Except channel 8 and channel 14, the fitting coefficients of other channels are all less 
than 0.008 K/Degree. 

 

Table 1. Fitting coefficients between bias of sea-land channels 8-14 and satellite zenith angles 

Channel Fitting coefficient 

Land Ocean 

8 0.0152 0.0689 

9 0.003 0.0147 

10 0.0064 0.0479 

11 0.0005 -0.0274 

12 0.0028 0.0062 

13 0.0039 0.0253 

14 -0.0196 -0.0304 

3.3 Influence of Observed Brightness Temperature on Bias 

The heat source of the infrared imager is the black body inside the instrument, which uses space as a 
cold source, and the same is true for the AGRI imager, which performs self-calibration inside the 
instrument. Non-linear issues can cause bias in the detection of warm and cold targets, affecting the 
longitude of infrared imagers. Ignoring the slight nonlinearity that actually exists, assume that the 
imager's response to incident radiation is linear. It is necessary to further study whether these 
deviations show a dependence on the observed brightness temperature. Figure 6 shows the correlation 
coefficients and observation metrics for the observed brightness temperature value interval of 3 K 
and the deviation interval of 1 K. It can be seen from the figure that all channels are dependent on the 
observed brightness temperature, and the dependence is relatively high. In comparison, the correlation 
of channel 8 is lower than that of the other channels, its observation data are concentrated in 290 
K~300 K, and the correlation between the deviation and the observed brightness temperature value 
is 0.85. The observed data of channels 9 and 10 are mostly concentrated at 240 K~260 K, and the 
correlations between the deviation and the observed brightness temperature are 0.91 and 0.89, 
respectively. The observation data of channels 11-13 are concentrated in 270 K~290 K, the 
distribution of observation data is generally consistent, and the correlation between the deviation and 
the observed brightness temperature is also relatively close, which are 0.92, 0.91 and 0.93, 
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respectively. The correlation between channel 14 deviation and observed brightness temperature is 
the largest, reaching 0.97. The correlation of high-level channels is high, and the correlation of bottom 
channels is low. The possible reason is that some data problems have been corrected after 
recalibration, so that the observed brightness temperature value has a greater impact on the deviation. 

 

 
Figure 6. The relationship between channel 8-14 (a-g) deviation and observed brightness 

temperature value (Cor indicates the correlation coefficient, and the shade indicates the number of 
observations) 

4. Discussions 

This study preliminarily evaluates the bias characteristics of the FY-4A/AGRI infrared channel 
observations. There are still many uncertainties in the direct analysis of the biases, and the biases may 
be systematic or random. Systematic deviations may be sensor noise, behind which may be errors in 
sensor calibration, systematic errors in numerical prediction models, or errors in radiative transfer 
models. According to the study [24], the error between different models has little influence on the 
bias analysis because the bias statistics of different NWP fields are very similar. This means that the 
simulation results using other transport models are also roughly consistent with the ARMS model. It 
is now assumed that the robustness of the ARMS model is high, but there is an uncertainty in the 
estimation of the surface-sensitive channel, which is caused by the surface emission mode of the 
ARMS model[25]. Uncertainty can also be caused by a mismatch between the NWP model network 
and satellite activity trajectories, as well as by too short analysed time periods[26]. 

Based on the above discussion, the deviation value between land and sea, the dependence of the 
deviation on the satellite zenith angle and the observed brightness temperature are evaluated 
separately to avoid the grid mismatch error. Future research should focus on the bias correction 
scheme to improve the initial field accuracy and numerical forecast effect of numerical weather 
prediction. 

5. Conclusion 

The application of AGRI instruments has enabled China's geostationary meteorological satellite 
system to embark on a new journey. The high spatiotemporal and high resolution data sources 
obtained through AGRI scans provide great benefits for numerical weather prediction. In this study, 
the ARMS model was combined with the ECMWF ERA5 data to simulate the clear-sky brightness 
temperature of China's sea and land regions, and the deviation between the AGRI infrared channel 
observation data and the model simulation data was characterized. It was found that channels 8-10 
and channel 14 had positive deviations, and channels 11-13 had negative deviations. Channels 11-13 
have large differences in the distribution of deviations between land and sea. The deviation of the 
seven infrared channels on land and sea is almost within 1.5 K. On the sea surface, except for channels 
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8 and 14, the correlation between the deviation of other channels and the satellite zenith angle is small, 
and the fitting coefficients are all less than 0.0064; while the fitting coefficients of channels 8 and 14 
are 0.0152 and -0.0196, respectively. On land, the deviation of each channel has a greater correlation 
with the satellite zenith angle, and the fitting coefficients of each channel are larger than those on the 
ocean. There is a clear difference in the standard deviation of channels 8-10 and 14 and the standard 
deviation of channels 11-13. It was also found that all infrared channels have some dependence on 
the observed brightness temperature. Overall, the AGRI observations and ARMS simulations are very 
close. 
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