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Abstract	
Situation	awareness	has	been	widely	applied	in	disaster	warning,	equipment	detection,	
monitoring	and	other	scenarios.	Its	data	fusion	and	analysis	methods	have	developed	in	
a	diversified	way.	For	 the	health	management	of	 substation	equipment,	 there	 is	 still	
room	for	improvement	in	order	to	effectively	integrate	information	from	multiple	sites,	
analyze	the	operating	status	of	multiple	devices,	detect	and	locate	faults,	and	predict	the	
overall	situation.	This	paper	discusses	the	concept	of	situation	awareness,	analyzes	its	
role	 in	 the	 automation	 and	 intelligence	 process	 of	 substations,	 and	 summarizes	 the	
commonly	used	algorithms	for	data	processing,	situation	evaluation,	and	prediction	in	
recent	years.	
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1. Introduction 

As a node of power supply, the stable operation of substations is a crucial link to guarantee the daily 
life and industrial production electricity. On the other hand, ensuring the effective operation of power 
equipment is the core mission of power enterprises. The traditional operation and maintenance 
method in China's industry relies on regular inspection and power outage maintenance to identify 
faults and maintain equipment. This involves a lot of human resources and material and time resources. 
On the one hand, there are problems of excessive maintenance and prolonged power outages, and on 
the other hand, there is a risk of failure to repair in time. In recent years, as the power system has 
expanded and the power grid structure has become increasingly complex, the increasing number of 
substation sites and the need to cope with a variable open application environment have posed 
challenges to equipment management and maintenance in the power industry. Scholars both at home 
and abroad have been vigorously constructing intelligent power equipment situation awareness 
systems to achieve proactive health management through the analysis of equipment behavior states. 
This can achieve rapid and precise fault location and also evaluate and predict the power system 
situation. To connect various sites and utilize the data collected by secondary equipment, it is 
necessary to perform noise reduction and standardization on multi-source heterogeneous data for easy 
processing. Then, data fusion technology is adopted to interpret the observed environmental 
information, and based on this, evaluate and predict the operation status of power equipment. Scholars 
at home and abroad have done a lot of work in this field and made significant progress in various 
directions. However, how to improve the algorithm's performance, save expenses, and make the 
situation awareness system flexible to respond to new situations and threats in the open world has 
always been the technical focus of research on the application of situation awareness in civil fields. 
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1.1 Overview of Situational Awareness 

Different scholars have different definitions of situational awareness. Generally, situational 
awareness refers to the observation of situational elements within a certain time and space, and then 
using data fusion methods to analyze and understand the acquired information to obtain knowledge 
of the interested domain, and then use this knowledge to predict and infer the future status of these 
situational elements. In this definition, the concept of situational awareness is divided into three levels: 
perception level, understanding level, and prediction level. The perception level refers to the 
perception of environmental elements, the understanding level refers to the understanding of the 
current situation, and the prediction level refers to the inference of the future situation. Some scholars 
have summarized the operation of the situational awareness system into four stages: extraction of 
situational awareness elements, situational evaluation (information fusion and situational analysis), 
prediction of situational changes, and visualization of situational analysis, distinguishing between 
human decision-makers and electronic information systems and emphasizing the system's tool 
attributes. 

The perception stage has an impact on subsequent processing depending on the observer relied upon. 
When humans act as observers, the input is natural language text information, which often poses 
challenges to preprocessing and algorithm design, while sensors can always convert other signals into 
electrical signal form for input to the system. When sensors act as observers, they record physical 
phenomena such as sound, light, electricity, temperature, or vibration truthfully. Compared with 
humans, sensors do not deliberately report false or withhold information, nor do they make subjective 
judgments. The cost of most sensors is less than human resources. When supported by a certain level 
of industrial technology, the probability of sensor failure is small, and even if a failure occurs, it is 
usually easy to troubleshoot. Sensors are usually placed in specific locations for specific purposes, 
even if they are placed on moving platforms such as drones or cars, there are means to quickly locate 
and track them. In the situational awareness system, sensors are reliable observers and important 
members of the perception layer. 

Processing heterogeneous data from multiple sensors to obtain effective knowledge is a key content 
of the situational awareness system. Data processing includes preprocessing, analysis, and integration. 
In the preprocessing stage, noise filtering is first performed on the signal to obtain data containing 
more valid information and less redundant and interference information, and then all data are 
structured and standardized to reduce the burden of subsequent operations and avoid numerical 
overflow and other problems. Since data is collected from different sensors, different methods are 
mostly used for analysis, feature extraction, classification recognition, and selective retention or 
removal of detailed information. Finally, data is integrated according to a certain specific standard to 
obtain a consistent interpretation or description of the measured object. 

The premise of making appropriate decisions is a comprehensive understanding of the current 
situation and an accurate prediction of the trend of the situation. However, the real-world application 
scenarios are often open, full of ambiguous or even conflicting information. Therefore, it is necessary 
to construct a high-level information fusion system that can cope with such environments. Such a 
system can discover the intrinsic correlations between data rather than treating observed events as 
isolated, and balance the confidence levels of each event rather than being biased or completely 
negating a certain possibility, so as not to fail when facing conflicting information. The number and 
complexity of input information required by the system will be controlled within a reasonable range. 
Within a certain range, with the increase of data volume, more accurate predictions of the situation 
can be made, and marginal decreasing effects will be demonstrated after exceeding a certain threshold. 
In order to construct a reasonable and usable situational awareness system, it is necessary to consider 
the specific application scenarios and the characteristics of the target objects, and comprehensively 
use various methods and technologies such as sensing, communication, data processing, and decision-
making. 
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2. Health Management of Substation Equipment 

2.1 Power Measurement System of Substation 

A single substation can have multiple power measurement systems connected in parallel to the busbar. 
The data concentration device will collect, convert and send their measurement results to the power 
dispatch automation system, as shown in Figure 1. The power measurement system consists of main 
unit, transmission unit, and conversion unit, which can convert the analog current and high voltage 
of the primary system into digital current and voltage signals for remote transmission [6]. The main 
unit is composed of transformers, which can convert larger primary analog quantities into smaller 
secondary analog quantities. The transmission unit not only includes the secondary circuit for 
transmitting electrical quantities, but also includes a merging unit device for merging and processing 
electrical quantities into a specified format of digital signals for forwarding. The conversion unit will 
convert the signals into messages suitable for transmission. 

 
Figure 1. Power measurement system configuration of a single substation. 

Multiple substations are connected to each other through transmission lines and are all connected to 
the power dispatch automation system through communication lines, as shown in Figure 2. 

 

 
Figure 2. Schematic diagram of signal transmission and conversion. 
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2.2 Substation Situation Awareness System 

The substation situation awareness system consists of three levels: perception, understanding, and 
prediction. The perception stage considers both measurement and transmission. In China, substations 
are equipped with complete secondary equipment that can measure the electrical quantities of 
transmission lines to monitor the operation of the primary circuit. When a fault occurs in the primary 
circuit, the secondary circuit can also play a control role, stopping the primary circuit to prevent the 
fault from expanding. Information transmission within the station relies on Sampled Value (SAV) 
and Generic Object Oriented Substation Event (GOOSE) messages. GOOSE messages are used for 
command downstream protection actions for switching operations and to transmit switch status 
information, while SAV messages mainly transmit data exchange information of current and voltage 
values. Messages sent to the power dispatch automation system must conform to the IEC 104 standard. 

The understanding stage involves data preprocessing and data fusion. Data preprocessing includes 
noise filtering and data normalization. With the increasing level of intelligence in the power grid, 
large amounts of data are generated during grid operation and equipment testing. In this trend, data 
preprocessing is an important guarantee for efficient and reliable data quality management. When 
selecting noise filtering algorithms, it is necessary to consider that the electrical signals in the 
substation system are non-stationary and have sudden changes. When selecting data normalization 
algorithms, the balance between running efficiency and resource consumption should be considered, 
and overly complex methods should be avoided. Data fusion is the core content of situation awareness. 
When designing this part, the algorithm's adaptability to open application environments and its ability 
to make accurate decisions under common conditions should be considered. The calculation results 
should also be sufficient to serve as a reference for human decision-making. 

3. Data Preprocessing and Fusion 

3.1 Data Preprocessing  

3.1.1 Noise Filtering. 

Wavelet transform is based on short-time Fourier transform, introducing scale function and 
translation factor, and its window function can adaptively change with scale [8]. Compared with 
Fourier transform, wavelet transform can perform multi-resolution analysis and is more proficient in 
processing transient signals, making it suitable for denoising signals collected by power measurement 
systems. Si Yang applied wavelet denoising to harmonic analysis in power systems, determined the 
wavelet basis, and proposed a threshold modification method to prevent harmonic components from 
being eliminated as noise [9]. Gu S et al. addressed the problem of fast extraction of electrical 
equipment state signals in digital substations, optimized ant threshold estimation using wavelet 
denoising, and obtained the global optimal threshold [10]. Tan Xue et al. improved the threshold 
function of wavelet so that it is continuous at the temporary threshold, thus solving the drawback of 
soft and hard thresholds, and proved through simulation that it is superior to traditional threshold 
functions [11]. The reasonable selection of wavelet basis functions determines the effectiveness of 
wavelet denoising. However, the wavelet basis is artificially selected. 

Empirical mode decomposition (EMD) does not require the presetting of basis functions but rather 
adaptively decomposes signals according to their own characteristics, thus widely used in the field of 
non-stationary signal filtering [12]. Huang E believes that any complex signal can be decomposed 
into the sum of several intrinsic mode functions with a single instantaneous frequency, and proposed 
the algorithm for decomposition, namely, empirical mode decomposition [13]. AꞏKomaty et al. 
proposed a filtering algorithm that reconstructs signals from some sub-signals after EMD 
decomposition, using the Euclidean distance of probability density functions as the filtering criterion 
[14]. YꞏKopsinis et al. proposed a filtering and denoising algorithm that performs hard threshold 
filtering on sub-signals and then reconstructs signals [15]. Huang Huiting proposed an improved soft 
threshold filtering method and demonstrated through experiments that it has better denoising effect 
than the aforementioned hard threshold filtering method [16]. Compared with wavelet transform, 
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empirical mode decomposition has unique advantages but lacks mathematical theoretical support and 
has relatively slow calculation speed [17]. 

3.1.2 Normalization 

With the increasing application of artificial intelligence algorithms in the field of equipment 
operational status evaluation, data normalization technology is becoming more and more widely used 
in power grid data management [18] [19]. Gu Qinghua et al. used linear normalization functions to 
quickly normalize data collected by multiple sensors when constructing a mine safety and health 
management situational awareness system [20]. Lin Shunfu et al. used clustering to screen data, using 
Euclidean distance as an evaluation indicator, and considered data far from the cluster center as 
outliers and discarded them [21]. Gao Jinlan et al. standardized the feature indicator matrix by using 
the differential standardization process in the pre-processing stage when designing an algorithm to 
identify bad data in the power system [22]. 

3.2 Data Fusion Techniques 

3.2.1 Bayesian Networks 

Bayesian networks simulate the human reasoning process through a directed acyclic graph, and have 
good interpretability. As a probabilistic mathematical network model, it can perform inference on 
uncertainty-related knowledge. When evaluating the reliability of distribution systems, Hou Limin et 
al. established a multi-state Bayesian network based on the minimum state cutset of components, and 
used probability indicators to identify the weak points of the system. Zhou Fengli et al. introduced 
feature extraction and learning strategies into the Bayesian network algorithm, constructed a closed-
loop system, and improved the fault classification capability of intelligent substations. Dai Zhihui et 
al. used dynamic Bayesian networks to analyze the reliability diagram of substation monitoring 
functions, and demonstrated through examples that it can well describe the dynamic characteristics 
of the system. Lu Rui et al. of the Wuhan Electrification Bureau of China Railway designed an 
engineering quality and safety control system based on Bayesian networks for the "Four 
Electrifications" project of railways, and discussed in detail the ideas of using Bayesian networks for 
risk management. Bayesian networks have a wide range of applications in the field of engineering, 
but the modeling process is complex. Whether it is determining the network's topology or constructing 
conditional probability tables, prior knowledge provided by professionals is required. 

3.2.2 D-S Evidence Theory  

D-S Evidence Theory uses belief intervals to directly express "unknown" and "uncertain" information, 
and is a commonly used data fusion algorithm [28]. However, this algorithm cannot effectively handle 
evidence conflicts [29], and its computational complexity grows exponentially. Many scholars have 
conducted extensive research to make this algorithm capable of dealing with conflicting evidence. 
Yager believes that the Dempster combination rule itself has problems, so he adopts a new synthesis 
formula that converts some of the conflicting evidence into overall uncertainty [30]. However, this 
method does not satisfy the associative law, and for highly conflicting or completely conflicting 
evidence, conflicting evidence is still assigned to the empty set, which does not fully utilize the 
information of conflicting evidence [31]. Haenni has proved that the Dempster combination rule 
satisfies both the commutative and associative laws, and believes that this rule has both solid 
mathematical foundations and the potential to handle a large amount of evidence [32]. Some scholars 
therefore believe that the Dempster combination rule itself is not the problem, but rather the model 
has issues. Murphy proposed that preprocessing conflicting evidence can both speed up algorithm 
convergence and handle evidence conflicts [33]. Following this idea, domestic scholars have 
improved Murphy's algorithm and achieved good results [34][35]. 

3.2.3 Rough Set 

Rough set is an algorithm proposed by Pawlak to find internal correlations in large, highly redundant, 
and incomplete fuzzy information [36]. This algorithm has zero tolerance for uncertainty, making it 
lack fault tolerance. Moreover, while rough set theory can handle nonlinear and strongly coupled 
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problems, it is relatively less effective in dealing with simple information. Wang and Ziarko proposed 
a probabilistic rough set model that improved the qualitative partitioning of the classical model to 
quantitative partitioning [37]. Yao proposed a decision rough set model, which can derive various 
probability models, thus providing a solid theoretical foundation for rough set theory [38]. Improved 
rough set models have high fault tolerance and are widely used in fields such as data mining and the 
Internet of Things [39]. 

3.2.4 Artificial Neural Networks 

Neural networks are a type of artificial intelligence algorithm that mimics the way the human brain 
processes information. These algorithms have the ability to learn and remember, and after sufficient 
training, they not only have strong fault tolerance and resistance to noise interference, but also have 
high accuracy. Multilayer neural networks can solve complex nonlinear problems, and they have a 
wide range of applications and many practical achievements. Tong Zhongzheng et al. designed a data 
fusion method that combines neural networks and fuzzy reasoning, which was proven to be able to 
detect multiple faults in substation equipment simultaneously through experiments [40]. Wang Qi et 
al. used a convolutional recursive neural network to recognize infrared images that have been 
segmented into superpixels, and demonstrated through experiments that the system can effectively 
evaluate the operational situation of substation equipment [41]. Zhu Jiayi et al. designed a short-term 
electricity load forecasting method based on LSTM neural networks, tested the algorithm using 
competition data, and proved that its convergence speed and accuracy are superior to traditional 
algorithms [42]. Wu Yijia et al. constructed a convolutional neural network based on attention 
mechanism, used the network to extract defect image features of substation equipment, and 
demonstrated through experiments that this method greatly improves the detection method's anti-
interference ability and accuracy [43]. Neural network algorithms require a large number of training 
samples and occupy a large amount of computing resources, which used to greatly restrict the 
development of this technology, but these problems have gradually become less prominent. There is 
currently no suitable mathematical explanation for the neural network model. 

3.2.5 Hidden Markov Model (HMM) 

Hidden Markov Model (HMM) is a statistical modeling technique for capturing hidden information 
from observable random variables. It is a specific form of dynamic Bayesian network and can also be 
seen as a two-dimensional extension of the Markov model [44]. Baum and Petrie proposed a 
probability model and its statistical inference method, which models the state sequence using a finite 
state Markov chain and generates an observation sequence from the state sequence [45][46][47]. 
Ferguson added a variable residence time for each state, making the duration distribution of the state 
explicit rather than implicit [48]. Rabiner developed the HMM and applied it to speech recognition 
[49]. Bryan et al. designed an autoregressive HMM and applied it to speech signal recognition, 
demonstrating that the algorithm can perform well even in the absence of prior knowledge [50]. 
Danisman argued that the assumption of conditional independence and identical distribution of 
classical model random variables may not hold in reality and proposed a new model with first-order 
Markov dependencies between adjacent states [44]. HMM has an unsupervised learning method and 
is widely used in fields such as speech recognition, text recognition, and weather forecasting, but its 
computation is slow and real-time performance is poor. 

3.2.6 Markov Logic Network (MLN) 

Richardson et al. combined first-order logic with Markov models to create a new statistical learning 
method called Markov Logic Network (MLN) [51]. MLN combines predicate logic and probabilistic 
graphs, improving the form of probabilistic graphs to compactly represent large Markov networks 
and facilitate knowledge base integration. The first-order predicate logic is also improved to express 
uncertain relationships. Snidaro et al. applied MLN to syntax integration and maritime situation 
assessment, demonstrating MLN's ability to encode uncertain knowledge and compute reasoning 
based on observed evidence [52][53]. Van Nguyen reviewed the applications of MLN in open-world 
situation awareness [54]. Yahui Wang et al. proposed a knowledge management framework based on 
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MLN and studied its application in civilian cockpit design, demonstrating the good combination of 
MLN with historical cases and knowledge bases [55]. The MLN theory is not yet perfect, and its 
learning efficiency is lower than previous models, and there are not many practical applications cases. 

4. Summary and Outlook 

Big data brings about big energy consumption, so the reasonable management of power resources is 
a necessary prerequisite for technological development. Fault detection and maintenance of 
substation equipment are important components of this management. Due to the different 
development status of countries and regions, the choice of fault diagnosis technology for power grid 
systems is not the same. The mainstream is still to achieve intelligent fault diagnosis through modern 
signal processing technology and artificial intelligence theory and pursue higher accuracy. China has 
a large power grid scale, high demand for electricity, and a high level of difficulty in maintaining the 
system. Therefore, the demand for intelligence is particularly urgent. It is necessary to explore the 
signal detection characteristics of substation equipment and fault diagnosis methods, to dig out more 
effective technologies, to find suitable detection methods, and to construct an efficient and practical 
equipment health management and situational awareness system. 
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