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Abstract	

In	order	to	study	the	dynamic	characteristics	of	helical	gear	transmission	systems,	while	
considering	 factors	 such	 as	 constant	 driving	 torque	 excitation,	 constant	 load	 torque	
excitation,	gear	backlash,	support	bearings,	support	damping,	and	gravity,	an	8‐degree	
of	 freedom	 nonlinear	 dynamic	 model	 of	 helical	 gear	 bearing	 bending	 torsion	 axis	
coupling	was	established	using	Lagrange's	theorem.	The	fixed	step	Runge	kutta	method	
was	used	to	numerically	solve	the	model,	and	the	vibration	response	sweep	frequency	
map	and	vibration	response	time	domain	curve	of	the	helical	gear	system	considering	
time‐varying	 center	 distance	 under	 velocity	 excitation	were	 obtained.	 The	 research	
results	indicate	that	time‐varying	center	distance	increases	the	vibration	amplitude	in	
the	 ݔ 	 direction	and	has	a	significant	 impact,	while	 the	vibration	amplitude	 in	 the	 	ݕ
and	 	ݖ directions	decreases.	As	the	velocity	excitation	increases,	the	vibration	response	
amplitude	of	the	system	will	increase.	
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1. Introduction 

Gear systems are widely used in various machines and mechanical equipment, and are important 
motion and power transmission devices. At present, many scholars at home and abroad have 
conducted extensive research on the dynamic characteristics of gear systems and found that the 
dynamic characteristics of helical gear systems are very complex. Therefore, it is still necessary to 
further explore the influence of various factors on their dynamic characteristics. 

Due to the structure of the helical gear itself, this system has very rich nonlinear dynamic 
characteristics. Due to the generation of axial force, in addition to bending vibration, Torsional 
vibration will also produce axial vibration, and even bending torsional shaft coupling vibration, which 
has a very important impact on the gear system [1, 2]. In the study of dynamic characteristics of gear 
systems, scholars almost always study the gear rotor bearing transmission system. For example, Wang 
Lihua et al. [3] established a dynamic model for the coupled vibration of helical gear bending torsion 
axial torsion pendulum, derived the vibration differential equation of the system, calculated the 
vibration response of the transmission system, and conducted good numerical simulation of the 
helical gear transmission system, providing an effective method for the dynamic design of the helical 
gear transmission system. Ren Chaohui et al. [4] applied the lumped mass parameter method to 
establish a dynamic model of multi degree of freedom helical gear rotor bearing bending torsion shaft 
coupling, taking into account factors such as time-varying input/output torque, gear eccentricity, 
comprehensive transmission error, gravity excitation, and nonlinearity of supporting bearings. On 



International	Core	Journal	of	Engineering	 Volume	9	Issue	5,	2023
ISSN:	2414‐1895 DOI:	10.6919/ICJE.202305_9(5).0059

	

485 

this basis, the dynamic differential equation of the helical gear transmission system was derived, and 
the effects of parameters such as speed, gear eccentricity, and bearing clearance on the vibration 
response characteristics of the transmission system were analyzed. Kahraman [5] established a three-
dimensional dynamic model that includes lateral, torsional, axial, and rotational (rocking) movements 
of flexible mounting gears. 

Due to lubrication, temperature compensation, manufacturing and installation errors, gear systems 
inevitably have backlash on the tooth side. Clearance is a factor that cannot be ignored in the gear 
system, and it also affects the dynamic characteristics of the gear system. Wang Xin et al. [6] 
established a three degree of freedom single stage helical cylindrical gear axial torsional coupling 
nonlinear dynamic model considering nonlinear factors such as backlash, time-varying meshing 
stiffness, and comprehensive meshing error. Based on the "segmented linear" tooth side clearance 
function used in straight cylindrical gear transmission, a tooth side clearance function suitable for the 
meshing characteristics of helical cylindrical gears is obtained through high-order fitting. The variable 
step Runge kutta method is used to solve the dynamic equation of the helical cylindrical gear system, 
and the nonlinear dynamic response results of the system under two different tooth side clearance 
functions are obtained. Gao Haodong et al. [7] established a three gear Torsional vibration model 
considering such factors as backlash, tooth surface friction and time-varying meshing stiffness. The 
influence of layout parameters on tooth surface friction and time-varying meshing stiffness was 
analyzed, and the influence of different friction factors on the dynamic response of the system and 
the influence of the presence or absence of friction factors on the chaotic motion of the system were 
studied. 

This article establishes an 8-degree of freedom nonlinear torsional vibration model for helical gear 
pairs; The fixed step Runge kutta method was used to numerically solve the differential equations of 
the model, and the effects of velocity excitation, initial backlash, and time-varying center distance 
factors on the dynamic characteristics of the gear system were explored. The steady-state vibration 
response and transmission error response of the system were obtained. 

2. Dynamic Model of Helical Gears 

 
Fig 1. Dynamic model of helical gear wheel pair 

In the paper, the multi degree of freedom helical gear dynamic model studied is shown in Fig. 1.; The 
system under study consists of two gears installed on a well aligned input and output shaft. The gear 
is a standard error free involute helical gear; The gear pair is modeled as a generalized lumped 
parameter Torsional vibration system; ݋ଵ and ݋ଶ is the gear center at the initial moment; ݀଴ is the 
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distance between the centers of the initial gear pair, β Is the initial helix angle of the gear pair. In most 
previous studies, these values were considered constant and independent of time; But usually, due to 
the vibration of the rotating shaft, the center of the gear will change; As shown in Fig. 1, the center 
of the gear starts from ݋ଵ and ݋ଶ moved to ݋ଵଵ and ݋ଶଶ; The change of the gear center and the 
lateral vibration of the gear system in all directions make the distance between the gear pair centers 
and the end face pressure angle change with time; 

In this paper, the influence of time-varying center distance on the nonlinear dynamics of gears is 
mainly discussed ݀௧  and ߙ௧  represents; To simplify the calculation, tooth surface friction is not 
considered. 

݉௣,௚ represents the mass of the small wheel and the driven gear;	݇௜௫ and ܿ௜௫ሺ݅ ൌ ,݌ ݃ሻ represent the 
bearing stiffness and bearing damping of gear ݅  in the ݔ  direction respectively; 	݇௜௬  and ܿ௜௬ 
represent the bearing stiffness and bearing damping of gear ݅ in the ݕ direction respectively;	݇௜௭ and 
ܿ௜௭ represent the bearing stiffness and bearing damping of gear ݅ in the ݖ direction respectively; And 
consider them as linear springs and viscous dampers.	݇௠ and ܿ௠ representing the comprehensive 
stiffness and damping of gear meshing, respectively;	ܴ௕௜ represents the base circle radius of gear ݅; 
 .ሶ௚ indicates the angular velocity of the gearߠ ;ሶ௣ represents the angular velocity of the pinionߠ

For this model, its dynamic transmission error ݖ௧ is  

              tsin cos cos + sint p g p g t bp p bg g g pz x x y y R R z z               (1) 

here, β represents the helix angle, which is a constant value; ߙ௧ represents the time-varying pressure 
angle of helical gear at any time. According to the geometric relationship, then 
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arccos bp bg
t
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 
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     

 (2) 

Here, ݀଴ ൌ ܴ௣ ൅ ܴ௚; ܴ௣ and ܴ௚ Represent the pitch radius of the pinion and gear respectively. 

In the process of gear transmission, the backlash is almost composed of two parts: constant backlash 
and time-varying backlash; This article considers two parts of backlash; Constant backlash is the 
initial backlash; It represents the total backlash assuming that the surfaces of two gears are smooth, 
usually caused by gear installation errors and tooth thickness deviations; In this study, based on the 
meshing principle of involute gears,the half of the total backlash ܾ௧ can be expressed as 

 0 2t tb b b    (3) 

       0t bp bg tb R R inv inv       (4) 

Here, invሺݔሻ is an involute function, invሺݔሻ=tanሺݔሻ-ߙ ,ݔ଴ is the initial end face pressure angle. 

The Torsional vibration and axial vibration of the gear system are considered; Therefore, the 
differential equation of motion for a gear pair can be derived from eight generalized coordinates, 
whose vector form is 

 
T

p p p p g g g gq x y z x y z      (5) 

 ݖ and ,ݕ ,ݔ ௜ represents the lateral vibration of gear ݅ relative to the gear center in theݖ ௜ andݕ,௜ݔ
directions, respectively 

Through the generalized coordinates mentioned above, the kinetic energy T, potential energy U, and 
dissipation function R of the system can be derived accordingly. 
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Using Lagrange's theorem, the differential equation of a gear system satisfies 
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Here, ܨ௠,௖
ఛ  represents the meshing force and meshing damping of gear engagement τ; ܨ௠௭,௖௭

ఛ  
represents the meshing force and meshing damping of the axial direction of gear engagement τ; 

  ,m m t tF k f z b  ,  1 ,c m t tF c f z b   (17) 
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Here,		ܿ௠ఛ ൌ ݇௠ఛ	௠ටߦ2 ௚ܫ௣ܫ ൫ܫ௣ܴ௕௚
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ଶ ൯⁄ ,	݂ሺݖ௧, ܾ௧	ሻ is a nonlinear function of gear backlash, 

it can be expressed as 
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Here, 
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Through the partial derivative relationship, the following can be derived 
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Table 1. Main parameters of helical gear pairs 

parameter pinion gear 

number of teeth 23 48 
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mass(kg) 0.67 2.94 

rotational inertia(kg∙ mଶ) 3.07e4 5.83e-3 

normal modol(mm) 2.5 

initial face pressure angle ߙ଴(°) 20 

Meshing damping coefficient ߦ௠ 0.025 

tooth width(mm) 30 

helix angle 17.75 (°) ߚ 

bearing support stiffness (N/m) 6.56e7 

bearing damping (N/m) 1000 

Initial backlash ܾ଴(mm) 100 

3. Dynamic Response Results and Analysis of Helical Gears 

The analysis of this article focuses on the dynamic characteristics of gear pairs with time-varying 
center distance, as shown in Fig. 1; The relevant gear parameters are shown in Table 1. Unlike 
previous scholars, the Lagrangian method is used to obtain the nonlinear dynamic model of gear pairs; 
On this basis, the dynamic effects of velocity excitation on helical gear systems with time-varying 
center distance were explored, and a constant center distance gear model was used for comparison; 
For the dynamic model of helical gear pairs, namely formulas (9) - (16) the Runge Kutta method is 
used for numerical solution; Explore the dynamic effects of different parameters on helical gear 
systems. 

3.1 The Effect of Velocity Excitation on Vibration Response 

In gear systems, velocity excitation is one of the key factors affecting the dynamic behavior of 
mechanical systems, and studying the nonlinear dynamic characteristics of the system is of great 
significance; Here, the small gear speed is used as the excitation source of the system; Similarly, the 
driving torque and load torque excitation sources of the system cannot be ignored; In this section, the 
main focus is on exploring the impact of velocity excitation sources on the dynamic characteristics 
of helical gear systems. The following data graphs are all steady-state data of the gear system. 

Next, in order to understand the vibration response of the entire gear transmission system under speed 
excitation, the transverse and axial vibration response sweep frequency of the gear system is given 
under speed excitation from 500r/min to 9000r/min, and the maximum vibration response in each 
direction is taken as the ordinate of the coordinate system. During this process, the driving torque of 
the small gear is 10N ∙ m, and the initial backlash is 100 μm; The response results of the small gear 
are shown in Fig. 2. 

Fig. 2 shows the vibration response diagram of the small gear in the ݕ ,ݔ, and ݖ directions, taking 
into account the time-varying center distance factor. By comparing with and without time-varying 
center distance, the vibration response trend in each corresponding direction is roughly the same, 
indicating that time-varying center distance has almost no effect on the vibration characteristics of 
the system. The displacement vibration amplitude in the y direction is significantly greater than that 
in the ݔ and ݖ directions. It can also be observed that the vibration response of the system in various 
directions undergoes resonance (3200rpm) and jumping (7000rpm) under some speed excitation. The 
resonance phenomenon is due to the consistency between the speed excitation frequency and the 
natural frequency of the gear system, and the jumping is due to the presence of gear backlash. The 
existence of time-varying center distance also delays the occurrence of these two phenomena, 
resulting in higher velocity excitation. From the figure, it can be seen that the time-varying center 
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distance has a certain impact on the vibration amplitude in the ݕ ,ݔ, and ݖ directions; In this model, 
the time-varying center distance has a significant impact on the vibration response of the small gear 
in the ݔ direction, while the influence in the ݕ, and ݖ directions is very small. It can be seen from 
the figure that the time-varying center distance increases the vibration response amplitude in the ݔ 
direction and decreases the vibration response amplitude in the ݕ and ݖ directions, which is caused 
by the time-varying backlash and time-varying pressure angle. The vibration displacement of the 
pinion in the ݔ and ݕ directions is negative, and the displacement in the ݖ direction is positive, 
indicating that the vibration response direction in the ݔ and ݕ directions is the same as the positive 
direction of the coordinate system established by the system, and the ݖ direction is in the opposite 
direction. 

 
Fig 2. Scanning frequency map of lateral and axial vibration response of pinion 

 

In order to gain a deeper understanding of the difference between the time-varying center distance 
model and the constant center distance model, the nonlinear dynamic response of the gear system 
under 2000 r/min and 6000 r/min speed excitation was analyzed. 

 
Fig 3. Time domain diagram of lateral and axial vibration response of pinion at 2000rpm 

 

Fig. 3 and Fig. 4 show the time-domain comparison of lateral and axial vibration responses of the 
small gear under speed excitation of 2000r/min and 6000r/min, respectively. It can be seen that time-
varying center distance does not change the vibration characteristics in the ݕ ,ݔ and ݖ directions, 
but it will affect the vibration amplitude; The influence on the vibration amplitude in the ݔ, direction 
is significantly greater than that in the ݕ  and ݖ  directions, which increases the vibration 
displacement in the ݔ, direction by almost twice. This is due to the existence of time-varying center 
distance leading to the generation of time-varying backlash, which increases the backlash during the 
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meshing process of the gear system; However, for the ݕand ݖ directions, the impact is exactly the 
opposite, reducing the vibration response, but the reduction is relatively small. For speed excitation, 
it can be observed that speed excitation changes the vibration characteristics of the system in all 
directions, and as the speed of the pinion increases, the vibration amplitudes in these three directions 
will increase. The corresponding frequency domain diagram also exhibits the same pattern. During 
the vibration response process of the entire gear system, the vibration response in the ݕ-direction is 
greater than that in the other two directions, which is caused by the meshing form of the helical gear 
and the established coordinate system. 

 
Fig 4. Time domain diagram of lateral and axial vibration response of pinion at 6000rpm 

4. Conclusion 

Taking into account factors such as constant driving torque excitation, constant load torque excitation, 
gear backlash, support bearing, support damping, and gravity, an 8-degree-of-freedom nonlinear 
dynamic model of helical gear bearing bending torsion axis coupling was established using 
Lagrange's theorem. Analyzed the impact of velocity excitation on the vibration response 
characteristics and dynamic transmission error of a helical gear system with or without considering 
time-varying center distance. The main conclusion are as follows: 

The time-varying center distance has a significant impact on the dynamic characteristics of helical 
gear systems. It has a significant impact on the vibration response of the system. The vibration 
response amplitude in the ݕ ,ݔ, and ݖ directions is different, which increases the vibration response 
amplitude in the ݔ direction and has a significant impact, while the vibration response amplitude in 
the ݕ and ݖ directions decrease; And as the speed excitation increases, the vibration response of the 
system will increase. 
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