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Abstract	
This	 article	 employs	 Maxwell	 equations	 in	 quasi‐static	 electromagnetic	 field	 and	
D'Alembert's	 principle	 to	 deduce	 the	 differential	 equations	 of	motion	 governing	 the	
behavior	 of	 an	 elastic	 plate	 experiencing	 Lorentz	 force,	 and	 study	 on	 vibrational	
characteristics	of	 three‐direction	displacements.	The	article	provides	vibration	mode	
functions	for	the	boundary	conditions	of	simply	supported	thin	plates	with	immovable	
and	movable	edges.	To	obtain	the	vibration	equation	of	three‐direction	displacements,	
space	 coordinates	 and	 time	 coordinates	 are	 separated	 using	 the	 Galerkin	 method.	
Subsequently,	the	corresponding	ordinary	differential	equation	is	solved	to	determine	
the	form	of	all	displacement	solutions.	
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1. Introduction 

Plates are one of the most popular continuous structural systems used in many engineering 
applications including aircraft structures, nuclear vessels, bridges, power hydraulics etc.The study of 
the dynamic characteristics of a plate in a magnetic field environment can help to understand and 
reveal the effects of electromagnetic fields on the complex dynamic behavior of the plate.Librescu 
[1] investigates the three-dimensional coupling of magneto-thermo-elasticity in a magnetic field for 
a conductive plate.Li[2] discusses the internal resonance of rectangular thin plates with different size 
ratios of 1:1 or 1:3 in a transverse magnetic field.Gao[3]gets an analytical solution for eddy currents 
and electromagnetic forces of a circular plate based on the T-method.M. Higuchi[4] obtained dynamic 
and quasi-static analytical solutions for the controlled stress field and eddy currents of a conductor 
plate in the presence of arbitrary variable magnetic fields.Ipakarand M Bayat[5] used the HPM to 
study the vibration frequency of a truss shell under simply supported boundary conditions. Qasem 
M[6] applied the extended homotopy perturbation method to obtain the analytical solution for the 
boundary layer flow of condensing vapor.Hu[7] used the double parameter perturbation method to 
solve the large deflection bending problem of functionally graded thin plates with different tensile. 
Zhong[8] studied the large deflection problem of a circular thin plate under uniform external pressure 
using HAM. 

Although many studies have been conducted by scholars, research on the linear vibration analysis of 
the elastic plates with three-direction displacements is still scarce. Analyzing the convergence of 
vibration of elastic plates under different magnetic induction intensities is significant for controlling 
the vibration of elastic plate in practical engineering problems. 
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2. Differential Equations of Vibration for Plates 

2.1 Basic Equations of Electromagnetic Fields 

In a quasi-static electromagnetic field, the impact of displacements current can be disregarded, and 
since the current flowing through the thin plate is isotropic, there is no charge accumulation, and the 
charge density equals 0. Thus, Maxwell equations can be expressed in the following form:
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Lorentz force density expression: 

 f J B v  (2) 

In cases where the velocity of the material is much lower than the speed of light, the constitutive 
equation for electromagnetic materials in isotropic homogeneous mediums is linear. However, the 
relationship between current density and electric field strength is nonlinear, and it can be expressed 
in the following form: 
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In the formula, ε, μ and σ represent permittivity, permeability and conductivity, respectively. The 
geometric relationship of the displacements field of the thin plate under Kirchhoff's hypothesis: 
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The three-direction displacements u, v and w are the displacement fields in the x, y, and z directions, 
respectively. When the Lorentz force acts on a thin plate with a thickness of h, ignoring the 
electromagnetic disturbance term, substituting the equation (4) into (2) and integrating in the z 
direction yields the electromagnetic force and torque per unit area: 
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And electromagnetic torque 
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2.2 Differential Equations of Vibration for Rectangular Plates 

Assuming there is a conductive thin plate with no internal current or electric field and is not subject 
to external loads, it is placed in a uniform magnetic field with a magnetic induction intensity of 
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(Bx,By,Bz) in the x, y, and z directions. The four sides of simply supported plate are immovable edges, 
as shown in the figure..  

 
Figure 1. A fixed simply supported plate in a uniform magnetic field. 

The static equilibrium differential equation of the elastic rectangular plate is: 
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Here, the relationships between force and displacement are 
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the relationships between torque and displacement are 
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Among them tensile modulus Q=E/(1-υ2), shear modulus L=E/2(1+υ), where υ is the Poisson ratio 
and E is Elastic modulus. When establishing the differential equation of motion of the object, 
considering the inertial force exerted by the elastic body due to the acceleration and the Lorentz force 
(5) and torque (6) generated by the vibration in the electromagnetic field, and omitting nonlinear 
terms, the linear differential equations of three-direction motion of the elastic plate can be obtained 
according to D'Alembert's principle: 
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The combined motion in multiple directions generates Lorentz force, which acts in various directions 
and influences each other. Furthermore, for a thin plate with isotropic characteristics, its own equation 
system has high coupling. When incorporating Lorentz force into the motion differential equation of 
a conductive thin plate, which includes coupling in the first-order time derivative term, it can increase 
the difficulty of finding a solution. 

3. Vibration of the Simply Supported Plate under Electromagnetic Field with 
Different Boundaries 

3.1 Galerkin Method 

The complexity of problem-solving has increased due to the advancement of dynamics theory, and 
effective mathematical models are essential for research. The Galerkin method is commonly 
employed in the analysis of continuous system dynamics. In this method, a partial differential 
equation is assumed, and it can be expressed as:: 
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Take a set of shape functions φr(x) 1, 2...,r n  that satisfy the boundary conditions, where, construct 
the following function 
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Where qr(t) is the generalized coordinate. For any given function w (x,t), substituting it into the partial 
differential equation (13) usually results in a non-zero difference between the two sides, which 
becomes a functional related to the function w (x,t) and is called the residue of the vibration equation: 
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For elasticity, the residue also reflects the residual force. In order to minimize the residual force as 
much as possible, the unknown function qr(t) can be selected to make the residual force do zero work 
on the displacements corresponding to each shape function r(x), that is: 
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By utilizing the Galerkin method, the objective of discretizing the continuous body is achieved, and 
the partial differential equation can be transformed into a system of ordinary differential equations. 
Consequently, the subsequent analysis of the system becomes feasible. 

3.2 Vibration Analysis of a Fixed Simply Supported Boundary Plate under a Magnetic Field 

Assuming a conductive plate is placed in a uniform magnetic field of (B0x,B0y,B0z), where its length, 
width, and thickness are denoted by a, b, and h, respectively. The boundary conditions for the simply 
supported plate with immovable edges, as shown in the figure: 

In order to simplify the system to a finite dimension, an approximate function is used to expand the 
displacements u, v and w. The system is discretized using two coordinates of panel displacement, 
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namely the spatial and temporal coordinates, to account for different boundary conditions. For a 
simply-supported plate with immovable edges, the following boundary conditions hold: 

 
Figure 2. Simply supported plate with immovable edges in a magnetic field. 
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To ensure that the approximate function satisfies the geometric boundary conditions for the above 
situation, the three-direction displacements u, v and w can be expanded using temporal and shape 
function expressions of the following form: 
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Here, m and n are the half-waves in the x and y directions, respectively, both of which are positive 
integers. The functions um,n(t),vm,n(t) and wm,n(t) are unknown functions with respect to the 
generalized time coordinate t. Alternatively, they can be expressed as the (m,n)-th degree of freedom 
of the respective expansion functions. M and N represent the required terms in the plate displacement 
expansion. In the linear problem discussed in this article, we can make ,M N  .Write out the 
residual functions up to order M and N: 
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For convenience in subsequent calculations, the shape functions in trigonometric form with respect 
to spatial units are separated, where the coefficients are only functions of time and half-waves m and 
n, and independent of spatial coordinates: 
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According to the Galerkin method, multiplying Eq.(19) by the shape functions and integrating yields, 
with the requirement that the resulting average work done by the integrated displacements is zero: 
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Here,i=1,2,3...M and j=1,2,3...N.Computing the above expression yields the differential equation 
governing the vibration of a conductor plate in an electromagnetic field with immovable-edge simply-
supported edges: 
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The coefficient is a function solely dependent on time and half-waves m and n, and independent of 
spatial coordinates: 
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 (23) 

Eq.(22) represents a second-order constant coefficient homogeneous linear differential equation 
system consisting of three independent equations. The system can be easily solved for an infinite 
number of solutions as functions of the half-waves m and n. In other words, the complete form of the 
vibration function Eq.(18) can be obtained by solving the equation system Eq.(22). Since the 
coefficients of each term vary with the values of the half-waves m and n, the characteristic equation 
of the second-order differential equation is obtained by solving for them: 

 2 0 ( )    、 、r rs f s g r uA vA wA  (24) 

For the quadratic equation in the above formula, its solutions can be classified into the following three 
cases based on the discriminant of the equation = fr

2-4gr: 

The first case is when =0  In this case, Eq.(22) has two identical real roots, and the solutions can 
be expressed as: 
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The second case is when 0  . In this case, Eq.(22) has two distinct real roots, and the solutions 
can be expressed as: 
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The third case is when 0  . In this case, Eq.(22) has a pair of complex conjugate roots, and the 
solutions can be expressed as:. 
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The constants C1r and C2r are real numbers, and their values depend on the initial conditions. 

The complete expressions for the three-dimensional displacements u, v and w of the motion of a 
simply supported plate with immovable edges in an electromagnetic field can be obtained by 
substituting all the solutions obtained from the above judgments into the vibration mode function 
Eq.(22), where the solutions refer to all the possible values of um,n, vm,n and wm,n. 
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3.3 Vibration Analysis of an Active Simply Supported Boundary Plate under a Magnetic 
Field. 

Assuming a conductive thin plate is placed in a uniform magnetic field with magnetic induction 
intensity of (B0x,B0y,B0z), and the boundary around the simply supported plate is movable edges, as 
shown in the figure: 

 
Figure 3. Simply supported plate with movable edges in a magnetic field. 

For a simply supported plate with immovable edges, the following boundary conditions apply: 
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To ensure that the approximate function satisfies the geometric boundary conditions for the above 
situation, the three-direction displacements u, v, and w can be expanded using temporal and shape 
function expressions of the following form: 
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Substituting the above expressions into the original equation yields the residual function: 
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Where the coefficient is a function solely dependent on time and half-waves m and n, and independent 
of spatial coordinates. 
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According to the Galerkin method, multiplying Eq.(29) by the shape functions and integrating yields, 
with the requirement that the resulting average work done by the integrated displacements is zero: 
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Here,i=1,2,3...M and j=1,2,3...N.By computing the above equation, the vibration differential equation 
of the conductive thin plate in an electromagnetic field with a movable-edge simply-supported 
boundary can be obtained: 
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Where the coefficient is a function of the half-waves m and n and is expressed as follows: 
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The above Eq. (33) is a second-order constant-coefficient homogeneous linear differential equation 
system, with the first and second equations coupled with respect to um,n(t) and vm,n(t), which can be 
transformed into a fourth-order constant-coefficient homogeneous linear differential equation for 
solution. The third equation, which is about wm,n, is an independent equation whose solution has 
already been discussed in Eq.(25)-(27). For the motion differential equation Eq.(33) it can be easily 
solved for an infinite number of terms with respect to half-waves m and n, so the vibration function 
Eq.(33) can be fully expressed by solving the equation system. Now we will discuss the fourth-order 
constant differential homogeneous equation, which is obtained by transforming the first and second 
equations into them each other: 
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As the above two equations have the same form, their characteristic equations are: 
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It is obvious that here a0、b0、c0 and d0 are related to the half-waves m and n.The above mentioned 
quartic characteristic equation can be solved using Ferrari's method, denoted as: 
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Therefore, the solution of the Eq.(36) can be expressed as: 

 
2 2 3
0 0 0

1 2
0

0 0 0 0 0 0

0

2 4 4 81 1

4 2 4 3 2 2 3 4 2

  
       

 

a a b a b a a b c
s

a b
 (40) 

 
2 2 3
0 0 0

2
0

0 0 0 0 0 0
2

0

2 4 4 81 1

4 2 4 3 2 2 3 4 2

  
       

 

a a b a b a a b c
s

a b
 (41) 



International	Core	Journal	of	Engineering	 Volume	9	Issue	5,	2023
ISSN:	2414‐1895 DOI:	10.6919/ICJE.202305_9(5).0057

	

473 

 
2 2 3
0 0 0

2
0

0 0 0 0 0 0
3

0

2 4 4 81 1

4 2 4 3 2 2 3 4 2

  
       

 

a a b a b a a b c
s

a b
 (42) 

 
2 2 3
0 0 0

2
0

0 0 0 0 0 0
4

0

2 4 4 81 1

4 2 4 3 2 2 3 4 2

  
       

 

a a b a b a a b c
s

a b
 (43) 

Considering that the values of fuB, fvB, guB, gvBare all positive, and d0=guBgvBhuBhvB>0 on a large 
scale, it follows that the coefficient terms a0, b0, c0 and d0 of the characteristic equation Eq.(36) are 
all positive. Sun[9] has said that the Eq(36) does not have any real positive roots as solutions, and 
there are only three possible scenarios: four negative real roots, two negative real roots and one pair 
of complex conjugate roots, or two pairs of complex conjugate roots. 

For the case of four negative real roots, the solution is an exponentially decaying solution. The system 
is over-damped and will not oscillate. The general solution can be written as: 
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Here, s1,s2,s3 and s4 are the roots of the equation, their values are related to the half-waves m and n. 
The constants Ar and Br (r=1,2,3,4) are real numbers, and their values depend on the initial conditions 
and the roots of Eq.(36). 

For the case of two negative real roots and one pair of complex conjugate roots, the general solution 
can be written as follows: 
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Here, s1,s2, and o1±ω1 are the roots of the equation, their values are related to the half-waves m and 
n. Since the first two terms of each equation in Eq.(45) are exponential decay and disappear as time 
increases, the system will only oscillate at the damped natural frequency. The constants Ar and Br 
(r=1,2,3,4) are real numbers, and their values depend on the initial conditions and the roots of Eq.(36). 

The third case has two pairs of complex conjugate roots, and the solution can be expressed in the 
following form: 
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Here the solutions are given by o1±ω1 and o2±ω2, their values are related to the half-waves m and 
n. Then o1 and o2 are two damping exponential functions of the oscillation and ω1 and ω2 are the two 
natural frequencies of the damped oscillation. The constants Ar and Br (r=1,2,3,4) are real numbers, 
and their values depend on the initial conditions and the roots of Eq.(36). 

The three possible damping vibration cases discussed above depend on the values of the coefficients 
a0, b0, c0 and d0. For a single-degree-of-freedom system, the system's motion whether it vibrates or 
not depends on whether the damping coefficient is less than or greater than the defined critical 
damping coefficient. For a two-degree-of-freedom system, the use of an equivalent critical damping 
concept exists, but its expression is very complicated. According to the theory of equations to 
determine the properties of the roots, let us denote the roots as follows. 

 3 2Δ̂ 27 K P  (47) 

where 
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The characteristics of system motion are represented by the properties of the roots. If Δ̂ <0, the 
equation will have two negative real roots and a pair of complex conjugate roots, and the system will 
oscillate at a single natural damping frequency. This is commonly referred to as a degenerate system. 
If Δ̂ >0 and satisfies the following relationship: 
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Eq.(35) will have four negative real roots, indicating that the system has excessive damping and no 
vibration will occur. If the Δ̂ >0 and Eq.(49) is not satisfied, then Eq.(35) will have two pairs of 
complex conjugate roots, indicating an underdamped system oscillating at two natural frequencies. 
When Δ̂ =0, there will be at least two equal roots. 

The complete expressions for the three-direction displacements u, v and w of the motion of a simply 
supported plate with movable edges in an electromagnetic field can be obtained by substituting all 
the solutions obtained from the above judgments into the vibration mode function(33), where the 
solutions refer to all the possible values of um,n, vm,n and wm,n. 

4. Conclusion 

This article derives the motion differential equation of an elastic plate with three-direction 
displacements (u, v and w) in a magnetic field using D'Alembert's principle. Two different boundary 
conditions are set: the boundary for simply supported plate with immovable edges and the boundary 
for simply supported plate with movable edges. The corresponding vibration mode functions are 
given for each boundary condition, and the Galerkin method is used to separate the spatial and 
temporal coordinates. The original initial-boundary value problem is simplified into an initial value 
problem, obtaining the vibration equation with respect to time. It is found that the solution of the 
vibration equation is closely related to the half-waves m and n, and the solution forms of the vibration 
equation for the immovable-edges simply supported boundary and the movable-edges simply 
supported boundary are discussed. 
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