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Abstract	
With	the	increase	of	charging	stations	and	electric	vehicles,	the	driver's	decision‐making	
without	 fixed	 rules	 would	 exacerbate	 the	 unbalanced	 utilization	 of	 charging	 piles,	
resulting	 in	 an	 increase	 in	 the	 time	 cost	of	 charging.	To	 reduce	 the	overall	 charging	
waiting	time,	this	paper	proposes	a	charging	station	recommendation	framework	based	
on	multi‐agent	 reinforcement	 learning	 for	 complex	 charging	 scenarios,	which	 can	be	
extended	 to	scenarios	with	a	variable	number	of	agents	and	 low	delay	requirements.	
First	of	all,	the	state	and	reward	are	defined	by	taking	electric	vehicles	as	an	agent	and	
combining	 the	 characteristics	 of	 electric	 vehicles	 and	 charging	 stations.	 Secondly,	 to	
reduce	the	recommendation	delay,	an	actor‐critic	algorithm	based	on	mean	field	theory	
is	 designed,	 and	 a	 distributed	 decision	 is	 adopted	 to	 make	 recommendations	 for	
multiple	 charging	 requests	 simultaneously.	 In	 this	 way,	 each	 agent	 can	 take	 full	
advantage	of	future	data	when	training	the	Q	network.	Finally,	considering	the	influence	
of	state	transition	time	on	the	recommendation	results,	three	state	spaces	with	different	
time	steps	are	proposed	in	the	simulation	experiment	to	obtain	the	optimal	time	steps,	
and	 the	 results	 are	 compared	 with	 the	 shortest	 distance	 method	 using	 sequential	
decision	making,	 single‐agent,	and	multi‐agent	algorithm.	Experimental	 results	 show	
that	the	proposed	algorithm	has	the	best	performance.	
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1. Introduction 

The development of electric vehicles has emerged as a crucial initiative for sustainable development 
and to relieve the pressure of the energy crisis and the environment in light of the global 
environmental degradation. According to the China Charging Alliance, there were 3.368 million 
electric vehicles on the road in 2019 and 516,000 public charging stations. The manufacturing of new 
energy cars surged by 194.9 percent yearly from January to July 2021. The number of charging piles 
will increase more quickly due to the rapid development of new energy vehicles and the national 
initiative to accelerate the building of charging piles for the "new infrastructure". 

At the same time, many domestic charging station operators such as Tesco, Star Charging ,and third-
party platforms such as Baidu and Amap have also introduced information of mainstream charging 
stations in the market. However, faced with numerous charging stations, drivers tend to make choices 
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based on own habits or blindly, thus making charging completion take more time and charging costs. 
Electric vehicle users prefer charging platforms to guide them to make the best choice [1]. 

The recommendation of charging stations from the perspective of the user has been the subject of 
much research. They have taken into account a number of variables to improve the efficacy of the 
recommendations, such as user preference, travel cost, traffic conditions, and time. For example, in 
order to determine the user's preference for charging stations, Bu et al. [2] employed a collaborative 
filtering algorithm. This information served as the foundation for their recommendation. Wang et al. 
[3] used a factorization machine approach to predict recommendation results and combined federal 
learning to improve cross-platform data security. Jia et al. [4]'s method of cab trajectory prediction 
allowed them to select the charging station that would travel the least distance between the starting 
point and the intended destination. However, these studies do not take into account the impact 
between vehicles and charging stations at different times. Not considering the charging intentions of 
other users may lead to longer queues at charging stations for electric vehicles [1,5]. To address this 
problem, Wang et al. [1] used Pareto optimality to recommend charging stations for a group of EVs 
in a short period of time, resulting in an overall reduction in queuing time. The queuing up time 
prediction algorithm does not account for users who arrive at the charging station directly without 
sending a charging request although this method predicts numerous charging requests in a minute. A 
charging mechanism created by Zhang et al. [6] continuously monitors the condition of charging 
stations and changes the suggested stations list in real-time. In order to manage cars with various 
priority, Cao et al. [7] employed information on vehicle reservations. The information on electric 
vehicles and charging stations does, however, change frequently over time, making it extremely 
difficult for communication to continuously detect this information and feedback. 

Recently, reinforcement learning (RL) has been applied to games, transportation, and other fields due 
to its ability to effectively solve sequential decision problems in complex environments, and has been 
effective in autonomous driving [8,9] and vehicle order scheduling [10,11]. In contrast to charging 
time prediction, which requires more assumptions and rules, reinforcement learning will fully 
consider the impact of current decisions on the future, i.e., to maximize the expected cumulative 
payoff, interact directly with the dynamically changing complex environment, and train using 
historical data with real-time data to obtain the overall optimal policy. 

However, the following problems occur when reinforcement learning is used to make 
recommendations for charging stations: consider L charging stations where the state space size is 

1 2 LS S S S     and the action space size is 1 2 LA A A A     , meaning that the space size is 
exponential. The charging environment in a city with many charging stations has a wide state and 
action space, which is not good for the stability of network training. Zhou et al. [12] described the 
charging station recommendation problem as a single-agent action-value function learning task using 
an improved DQN (Deep Q-Networks) algorithm that takes into account information about 
surrounding charging stations when estimating the value function, utilizes graph convolutional neural 
networks for training, and reduces the state information input dimension. Nevertheless, in addition to 
the state and action high-dimensional problem, another major issue of directly learning a centralized 
agent system is the high latency associated with obtaining the overall state data and handing it off to 
the agents for computation, which is not suitable for large-scale charging scenarios that request for 
real-time recommendations. 

In large-scale environments, multi-agent reinforcement learning (MARL) can reduce latency [13,14]. 
In [15], a distributed training method with performance comparable to centralized training was 
developed to address the central server congestion problem by sharing parameters only with the 
neighboring agents during the training process. Wu et al. [16] designed a distributed computing 
architecture to reduce the network latency in the Nash actor-critic algorithm-based traffic signal 
control. Chu et al. [17] added a long and short-term memory network to the network structure of the 
value function, using historical data and the current state as input, to improve the stability of training. 
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Zhang et al. [18] treated each charging station as an independent agent and considers EV charging 
recommendation as a multi-objective optimization task. Each autonomous agent has a constant-level 
action space, which can be expanded to include settings with greater complexity, in this way. 
However, for the case of multiple requests in a short period time, the independent recommendation 
strategy of each charging station is still essentially a centralized sequential decision, which is difficult 
to process in parallel, i.e., it cannot take into account the actions taken by other charging requests in 
the same state at the same time, prolonging the wait time for EVs in the case of multiple requests in 
a short period of time. 

In this paper, a distributed multi-agent reinforcement learning model is designed. The overall goal is 
to minimize the overall driving time and queuing time at charging stations in a day. Present a 
distributed multi-agent reinforcement learning framework, to request per minute charging electric 
cars as the agent, on the one hand, can take into account the future behavior of the agent, on the other 
hand, can coordinate cooperation between multiple agents in order to reduce decision time delay, 
using distributed decision-making method, each agent chooses according to their local observations 
charging stations. Mean field theory is employed concurrently to address the problem of the variable 
number of agents. 

2. Charging Environment 

The first part of this section describes the procedure from charging request through charging 
completion. The fundamental components of multi-agent reinforcement learning for charging   
environments are described in the second part. 

2.1 Charging Process 

In continuous time, the moments when the vehicle sends a charging request and the state of the 
charging station is bound to change are called "charging important time points", and the whole 
charging process is described by these moments. As shown in Fig. 1: At the moment T0, the user has 
a charging demand and sends a charging request to the platform to go to a recommended charging 
station or chooses a charging station according to his habits. At the moment of T2, two possible events 
will happen: (1) the electric car leaves without charging due to the long queue time; (2) in the second 
case: there are free charging piles, and the electric car starts charging and leaves at the moment of T3. 

 
Figure 1. Charging process of electric vehicle 

2.2 MARL Model for Charging Environments 

( , , )i i i i
t t t tQ loc time qid is defined as a charge request at time t, including the request location, request 

time, and remaining power. 
Denote the sum of travel time and waiting time from i

tQ  to the target charging station by _ costime t , 
i.e., _ cos 2 1time t T T  . To minimize the overall _ costime t , the charging recommendation task is 
described as a multi-agent reinforcement learning problem: 
Agent: In 75% of the day, a city-scale charging environment may experience more than 10 charging 

events every minute [1], necessitating the need for several charging recommendations quickly. Each 
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minute's worth of charge requests from vehicles are regarded as agents, and recommendations are 

given for each i
tQ . Each agent is identified as , 1,2,iagent i m  ,and there are m  charging requests 

each minute. 
State: The definition of the state of a charging station is 1( , , , , ), 1,2,i k

cs cs cs csS O O O i k    , where i
csO  

is the observed value of each charging station, which includes its charging power, the number of 
charging requests at nearby charging stations, and the number of charging points that are now 
available. 
Each agent's anticipated arrival time at each charging station is given by the following

1( , , , , ), 1,2, ,i m
v v v vS S S S i m    .The use of charging stations after T1 determines how long electric 

car queues will last, assuming that the agent's recommended charging station is cs . Since the precise 

arrival time at T0 is unknown, the number of charging stations that are still available at cs   30 

minutes after T0 is taken as an additional observation, designated as 
1( , , , , ), 1,2, ,i m

fur nur nur nurS t t t i m     .The overall state of the charging environment is denoted as 

 , ,cs v furS S S S . 
Action: For each i

tQ , all agents can choose any charging station. If the number of charging stations 

is u  ,the set of actions for each i
tQ   is A  ={1,2,   , u  }. When iagent   selects the first charging 

station j , the action is denoted as ia j . 
Reward: After the driver arrives at the recommended charging station, if _ costime t  is less than 1 
hour and leaves after the EV charging is completed, the EV charging is successful, otherwise, the 
charging fails. The maximum reward setting is 60 minutes. The reward function is defined as: 
 

( _ cos 60
_ 60

0

time t
reward cwt

 
 


）
，success

，               failure
                           (1) 

3. Multi-agent Reinforcement Learning Framework based on Mean Field 
Theory 

3.1 Centralized Training Decentralized Execution Framework 

The Centralized training decentralized Execution (CTDE) framework [19,20] uses information from 
other agents during training .It utilizes only the local states observed by itself when executing actions, 
which significantly reduces the state space. The framework has the advantage of distributed execution 
and is easy to deploy to practical applications. During the training process, CDTE can coordinate the 
communication and cooperation among agents using more comprehensive state information, actions 
of other agents ,and future information, and thus learn the action-value function effectively. When 
using the policy network to select actions, each agent uses only its observed local environment state 
without global information. This decentralized execution method can reduce real-time 
recommendation latency and improve recommendation efficiency. 

3.2 Distributed Decision Making 

The time interval between two adjacent charging requests is short during the whole charging process 
in a day, and this phenomenon increases significantly during peak charging periods. Most of the 
previous studies are based on a first-request-first-service strategy [21,22] and do not consider the 
important impact of decision order in the execution of intensive actions. For example, there are three 
charging requests 1 2 3( , , )q q q  in a short period of time t . 

The recommendation results, with a total decision-making time of 60 minutes, are presented in Fig. 
2 when the choice is made in the order in which the request was made. If the decision on the 
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recommendation for the three requests in t   is made simultaneously, 3q   will be assigned to 
charging station 1, which will take 15 minutes; 1q , which will take 20 minutes; and 2q , which will 
take 15 minutes, for a total of 50 minutes. 

 
Figure 2. Recommendation results based on first-request-first-serve decision 

 

Therefore, to improve the recommendation speed and reduce the overall time, a plurality of charging 
request vehicles in the t   truck is used as agents. Because the number of charging requests is 
different and the action space is different in different states, each agent shares the same action-state 
value function network and policy network. At the same time, the mean field multi-agent 
reinforcement learning algorithm [23] is used to approximate the expected reward of each agent by 
averaging the action value of other agents. 

In a multi-agent system, the agents make decisions simultaneously for multiple requests within t , 
i.e., the problem to be solved is the allocation of resources to achieve the shortest overall time task. 

3.3 Recommendation of Charging Stations with Mean Field Approximation 

 
Figure 3. Distributed multi-agent reinforcement learning framework 
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This section presents a charging station recommendation algorithm using mean field theory (CSMF). 
Each agent's action-value function Q uses the global state, action, and average action values of other 
agents. Fig. 3 is a distributed multi-agent reinforcement learning framework. When making 
recommendations for electric vehicles, there is no need for unified calculation by the central server, 
only real-time data of electric vehicles are needed to calculate the recommendation results. 

The critic's update is achieved by minimizing the loss function ( )L   neighbors: 

 
2

( , , , , )( ) [ ( , , )]s a a r s DL y Q s a a
     

21
[ ( , , )]y Q s a a

N

  .                                    (2) 

( )_ cos ( , , ) a oy time t Q s a a
  
                                    (3) 

 

Where   is the parameter of the current Q function ,i.e., ( , , )Q s a a
 ,   is the current policy, and   

is the parameter of the target Q function , i.e., ( , , )Q s a a


    . y  is the estimated target value, and a  

is obtained by the target policy   . a  is the mean action of neighboring agents. We define the action 
of iagent  as ia ,then the mean action of the other agents is as follows: 

 
1

i j
ji

a a
N

                                              (4) 

 

where j
j

a  is the sum of the action values corresponding to the charging stations selected by the 

other agents, and 
1

iN
 is the number of charging requests (except iagent ) in a short period of time 

t . 

During the policy parameter learning process, each agent is trained based on its observed local state, 
without information from other agents. The strategy update uses the stochastic gradient descent 
method: 

 

( ) [ ( ) ( , , ) ( )]aJ o Q s a a a o
            

1
[ ( ) ( , , ) ( )]ao Q s a a a o

N


                               (5) 

 

Where   is the parameter of the current strategy ( )o . N  is the number of a minibatch for gradient 
descent. The online policy is used to explore the action during training 
 

Table 1. Algorithm 1: CSMF 
1: Initialize parameters  , , ,  , replay buffer D ,episode 0Ep   
2: Input the parameters   used to update the target function Q with the target policy  
function  , t  
3: For each episode: 
4: Initialize state s  
5: For each agent iagent , sample action ( )i ia o ,get the actions of all agents a  
6: Compute the mean action 1 2[ , , , ]ma a a a  by Eq. (4) 
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7: After each agent selects a charging station, it is rewarded with 1 2[ , , , ]mr r rr  ;State transition, 
get the next state s . 
8: Store ( , , , , )s sa a r  in D  
9: Take the next state as the new state: s s  
10: Update the critic network by minimizing the loss Eq. (2) 
11: Update the actor network using stochastic gradients Eq. (5) 
12: Update the parameters of the target critic networks: 

(1 )       , (1 )        

4. Experiment 

4.1 Data Description 

The number of charging stations is fixed at 10, and the area of 100 km2 is divided into 100 grids of 1 
km2. A grid unit is occupied by each charging station. The number of charging requests every minute 
for each grid is determined by the Poisson distribution, and the time of day is divided into 1440 
minutes. The training set for the electric vehicle charging suggestion simulator developed in this study 
consists of 30 days of operation, and the testing set consists of 10 days of operation. 

4.2 Evaluation Metrics 

Take into account q  as a collection of charging requests that follow our advice and are successfully 
charged; numq  is the quantity of q , and M  is the collection of requests. The waiting time for each 
request is ( )Wt q . The average waiting time for all charging requests is measured in minutes to 
determine the overall waiting time for charging. 

 

( )
q M

num

Wt q

Mwt
q




                                        (6) 

4.3 Algorithm 

In CSMF, a mean field multi-agent reinforcement learning algorithm based on the actor-critic 
framework, the Q network builds a five-layer fully connected network using the ReLU activation 
function. The policy network uses a three-layer fully connected network and the output layer uses the 
SoftMax activation function. Meanwhile, with the increase of t , the number of agents and the future 
charging environment information change more. To get a better result for the CSMF algorithm, three 
different t ,i.e. 1t  , 5t  , and 10t  , are set to compare the three and choose the best t  
value. 

Table 2 shows the test results of the CSMF algorithm for different t  (in minutes). Where 
_hour mwt  denotes the average waiting time in a certain two hours of the day, and rateT  denotes the 

ratio of the difference between the maximum and minimum values of _hour mwt  at different t  in 
that period time, as shown in equation (7). The performance gets better as t decreases, with 1t   
having the least _hour mwt  in all periods. rateT  is the smallest between 12:00 and 14:00 during the 
charging congestion time. This demonstrates the CSMF algorithm's robustness in relieving charging 
congestion scenarios. 

 
( _ ) ( _ )

( )
( _ )

t t
t t

rate
t

t

Max hour mwt Min hour mwt
T t

Max hour mwt
 




                       (7) 
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Table 2. The _hour mwt  of CSMF at different t  

Period of time 1t   5t   10t   rateT (%) 

6:00-8:00 3.65 4.76 6.47 43.6 
8:00-10:00 4.82 7.74 12.66 61.9 
10:00-12:00 6.03 9.59 16.92 64.4 
12:00-14:00 38.53 39.73 41.39 6.9 
16:00-18:00 4.31 6.74 9.64 55.3 

 

The CSMF algorithm with t  set to 1 is compared with the following three algorithms: 
Nearest makes recommendations for electric vehicles based on the rule of choosing the closest 
charging station. 
DQN [24] is a centralized deep Q-network approach where all charging stations are controlled by a 

centralized agent. DQN makes recommendations based on the state of all charging stations. The Q 

function in the experiments is a 3-layer fully connected network with hidden layers of dimension 256, 

using the ReLU activation function. The replay buffer size is 10000 and the batch size is 100. the 

learning rate is set to 0.0001. a greedy policy is used to select the actions. 

MADDPG [25] is an effective multi-agent collaborative MARL algorithm. Each charging station is 
treated as a i

tQ  in the experiment. All the agents make recommendations for that i
tQ  simultaneously 

in the chronological order of charging requests actors act according to their own specific observations, 
but critics have access to the full state and joint actions in training. The Q-function network consists 
of a four-layer fully connected network with a hidden layer of dimension 256, using the ReLU 
activation function. The policy function network uses a three-layer fully connected network with a 
tanh activation function for the output layer. To extend the MADDPG to a large-scale charging 
environment, the critic network is shared among all the agents. 

While CSMA utilizes distributed decision making to make suggestions simultaneously, Nearest, 
DQN, and MADDPG all use sequential decision making to make recommendations for each charging 
request. 

Fig. 4 shows the process of the training phase: each algorithm interacts with the charging environment 
during the training process. The number of available charging posts at the charging station changes 
during this process with the actions selected by the agents. Tmwt  denotes Mwt  in a day. Nearest is 
similar to Mwt   for DQN. Among the reinforcement learning algorithms, the single agent DQN 
algorithm based on centralized learning performs the worst. The single agent DQN algorithm based 
on centralized learning performs the worst among reinforcement learning algorithms. The multi-agent 
reinforcement learning algorithm based on centralized training MADDPG and CSMA not only uses 
the current state but also adds the future data of the charging station; as a result, it performs better 
overall than DQN and has a shorter average waiting time. The CSMA algorithm performs the best 
since it simultaneously considers the actions of other charge requests. 

 
Figure 4. Tmwt during training for all algorithms 
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Figure 5. Hmwt during training for all algorithms 

 

Table 3 shows the average waiting time for each charging request during the test phase. In order to 
compare the performance of the three algorithms, the environment is initialized with the same random 
seed, and the results are shown in Table 3. Multi-agent reinforcement learning algorithm achieves 
better results than Nearest and DQN. The Tmwt  and Hmwt  of the CSMA algorithm are reduced by 
71.8 and 54.8 percent, respectively, when compared to MADDPG, showing that distributed decision 
making can significantly enhance the recommendation effect.  

 

Table 3. Overall performance of each algorithm 

Performance Tmwt (minute) Hmwt (minute) 

Nearest 53.56 57.76 

DQN 59.96 59.98 

MADDPG 53.28 57.00 

CSMF 15.05 25.76 

5. Related Works 

5.1 The Training Framework of Reinforcement Learning 

There are now a number of popular agent training frameworks. A fully centralized training framework 
is the first. For instance, the CommNet suggested in [26] employed a central controller to manage all 
of the agents' actions. The controller is made up of a multi-layer neural network, which inputs the 
state of every agent, outputs every agent's action, and facilitates agent communication. A policy 
network and a Q network control all agents in the Bidirectionally-Coordinated Net (BiCNet) that 
Peng et al. [27] suggested. The second is a fully decentralized framework. Mnih et al. [28] designed 
a completely asynchronous parallel agent training method to speed up the training speed and applied 
it to Sarsa, Q-learning, and Actor-Critic single-agent reinforcement learning algorithms. Wen et al. 
[29] proposed a decentralized multi-agent reinforcement learning framework in which each agent 
finds its own best response according to the opponent's strategy. Tian et al. [30] used Kullback-Leibler 
(KL) divergence to model the opponent to improve the training performance of multi-agent. The third 
is an effective framework for decentralized execution and centralized training. This framework is 
more suited for multi-agent reinforcement learning tasks with a large state space and a non-stationary 
environment when compared to the other two frameworks. Based on this, certain studies have 
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improved more successfully. Foerster et al. [31] proposed a counterfactual multi-agent (COMA). In 
order to reduce the noise in calculating the gradient, the CTDE framework is used to train to take into 
account the impact of the behavior of each agent on the global reward. To arrive at the best strategy 
for decentralized execution, Mahajan et al. [32] developed a novel action exploration method based 
on CTDE. In [33], a more all-encompassing method of value function decomposition is put out that 
may be applied to a wider variety of tasks. 

5.2 Charging Station Recommendation 

A significant portion of the associated research on the recommendation of charging stations is based 
on the algorithm in the recommendation system and utilizes the charging station attributes for driver 
preference recommendations. For example, in some studies [2,6], a collaborative filtering algorithm 
is used to calculate user preferences, and Wang et al. [3] used the factorization machine method. In 
[4], the recommended criterion with the shortest distance is adopted. The other part is based on the 
recommendation with the shortest waiting time. Related studies have taken into account the behavior 
of other electric vehicles [1,5,7]. In the large-scale and ever-changing actual charging environment, 
the effect of the reinforcement learning method is better [12,18]. 

6. Conclusion 

In order to reduce the total amount of charging waiting time each day, we investigate the problem of 
recommending charging stations in this research. By using the finished training policy network to 
find recommended charging stations in a simulated charging environment, the superiority of the 
CSMF algorithm is demonstrated. The CSMF algorithm is much less in Tmwt   and Hmwt   than 
Nearest, DQN, and MADDPG. Personalized recommendations for charging stations will be made in 
the next work while taking user preferences into account. 
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