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Abstract 
The relationship between MTTF and failure rate is analyzed.TheWeibull distribution 
failure rate is used to model the bathtub curve.The parameters of the Weibull 
distribution are estimated by the least squares method and the correlation coefficient 
method.The distribution curve of the reliability is obtained.The life table of the energy 
meter provides the theoretical basis. 
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1. Introduction 

With the deepening of electric vehicles, measurement accuracy has become the main application 
scenario for electric vehicle charging facilities. DC charging stations have become the main charging 
method for public charging stations due to their advantages such as high power, fast charging, and 
the ability to directly charge power batteries. However, the harmonic components generated by the 
high-power nonlinear charging machine used in DC charging during the charging and discharging 
process, as well as the large number of ripple waves generated by pulsating charging, seriously affect 
the measurement accuracy of DC charging piles, causing operational errors to increase or even exceed 
the error limit, leading to problems such as trade settlement. Therefore, it is of great practical 
significance to study the measurement accuracy such as working error of the increasingly large 
number of DC charging piles. 

Scholars have conducted extensive theoretical research and experimental demonstrations to address 
this issue. The currently recognized method is to rely on model optimization and reconstruction of 
synchronous sampling values of current and voltage, so as to control the measurement error of active 
energy within a small range, and ensure that the DC charging station meets the requirements of 
relevant standards. 

Reference [1] developed a testing strategy based on weights for the factors that affect the operational 
errors of electric energy metering, but did not accurately predict the operational error data after the 
DC charging station was put into operation. 

Reference[2] uses the generalized extreme value distribution to analyze the probability distribution 
of the maximum electric field value, but under limited sample size conditions, only analyzing the 
maximum value in the measured data will result in significant deviation due to the small number of 
samples. 

During the operation of DC charging piles, the larger the error, the greater the impact on measurement 
accuracy. The smaller the error, the smaller the impact, and even negligible. Therefore, measurement 
accuracy can depend on the larger value of the error. However, in the process of statistical analysis, 
the random error distribution follows a symmetric normal distribution model. For asymmetric data 
that follows an interval exceeding a certain value but less than the maximum, the normal distribution 
cannot be fitted correctly. Therefore, while ignoring small error data, this article introduces extreme 
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value theory to describe the characteristics of extreme values and larger values that exceed threshold 
data, providing a reliable basis for preventing the potential risks caused by error extreme values. 

The Generalized Pareto Distribution (GPD) takes all extreme data exceeding a certain threshold as 
the research object, and describes the extreme value model of its probability distribution law. It can 
also obtain good results even with limited measured samples. It is a hot topic in extreme value theo- 
ry research and is increasingly valued by researchers in fields such as engineering, commerce, and 
medicine. 

This article proposes an optimization evaluation method for the measurement accuracy of DC char- 
ging piles based on the generalized Pareto distribution. The independent and identically distributed 
op- erating error sequence of DC charging piles is used as a random variable, and the generalized 
Pareto distribution in extreme value theory is used to model data that exceeds the error threshold. 
This meth- od effectively evaluates the operational risk situations that the system may encounter wi- 
th significant impact. This method only relies on a limited sample, It has the characteristic of fast c- 
alculation, providing meaningful reference and guidance for the trade settlement between the power 
supply and consumption parties in the system. 

2. Generalized Extreme Value Distribution (GEV) 

Set up a random sample sequence with independent and identically distributed errors, remember do 
nindividual the maximum/minimum value of a random sample sequence [3], then the random varia- 
ble the distribution is called the probability distribution of maximum/minimum error. 

The distribution function of the generalized extreme value distribution (GEV) is: 

 
1

( ) exp 1 ( )
x

G x




          
                             (1) 

 

Where in, 1 ( ) / 0x     ,   ， ， they are positional parameters, scale parameters and shape par- 
ameters. The shape parameter   controls the shape of the GEV distribution curve to adapt to diffe- 
rent error sample sequences. According to   different values, the GEV distribution can be divided 
in- to three categories, as shown in Table 1. 

 

Table 1. Types of GEV 

Types    Price Upper/Lower Bounds 

GEV I type (Gumbel distribution) 
=0 

No upper bound 

No lower bound 

GEV II type (Frechet distribution) 
>0 

No upper bound 

Bounded below 

GEV III type (Weibull distribution) 
<0 

Having an upper bound 

No lower bound  

 

According to Table 1, when  <0 and the number of random samples is large enough, the GEV III 
type is simplified as a Weibull distribution, which can be used to describe distributions with upper 
and lower bounds on extreme values. Figure 1 shows the density function of the extreme value dis- 
tribution.  
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Figure 1. PDF of extremum distribution 

3. POT Model and Generalization Pareto Distribution (GPD) 

3.1 POT Model 

POT The model, known as the Beyond Safety Threshold Model, is an important modeling method in 
extreme value theory, which models data in the sample data that exceeds a certain safety threshold. 

Set 1 2, , nX X X  as an independent identically distributed random variable, and the overall distribution 
function is ( )F x ,  as distribution function ( )F x  Upper endpoint of support, called threshold.When 

kX  , call k kY X   a sequence of exceeding thresholds called a threshold [4], also known as 
distribution ( )F x  cloth tail data, Over threshold distribution function ( ; )F y   ,It can be obtained 
from the conditional probability that: 
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The extreme value distribution function corresponding to the over threshold distribution is no longer 
a classical extreme value model. 

3.2 Generalized Pareto Distribution (GPD) 

According to Pickands limit theorem, when   large enough, the over threshold distribution function 
for a certain class of distributions ( ; )F y  Can be approximated as generalized Pareto distribution 
(GPD). 

Set 1 2, , nX X X as independent and identically distributed error random sample sequence, 
1 2max( , , )k nM X X X  , then there is a certain threshold kM  , make all thresholds exceeded  the 

sample approximately follows the generalized Pareto distribution, three parameters GPD(GP3) the 
distribution function and probability density function are: 
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wherein 0   ， ，  respectively refer to positional parameters, scale and shape parameters.When 
0  , x   ; when 0  , +x     ; when =0 , GP3 degenerate to two parameters including 

shape and scale parameters  GPD(GP2). 

According to  different values, the generalized Pareto distribution can be divided into three 
categories, as shown in Table 2. 

 

Table 2. Types of GPD 

Types    Price Distribution Function ( )G x    Probability Density Function ( )g x  

Pareto I type 0   I
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When =0 =1 ，  is the standard Pareto distribution, IG Exponential distribution, IIG Pareto 
distribution, Beta distribution. 

Based on  the size of the values, corresponding evaluations can be made on the tail data of the 
extreme value distribution. The larger the size, the slower the convergence speed of the tail of the 
distribution, and the more severe the heavy-tailed phenomenon, indicating a higher number of 
sequences exceeding the threshold, as shown in the probability density function in Figure 2. 

 

 

Figure 2. PDF of Pareto distribution 

 

When   is a positive number, the distribution belongs to the heavy-tailed distribution; When   is 
a negative number, the distribution belongs to the light tailed distribution; When   is zero, the 
distribution is exponential. 

According to Pickands' theorem, for any R  ,distribution function ( ; )F x  in ( ; , , )G x    the 
maximum attractive field, when the threshold   approaches the right endpoint, there exists a 
positive real number ( )  [5]. 
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From the theorem, it can be concluded that in the maximum attractive field, the over threshold distr- 
ibution can be approximately described by the generalized Pareto distribution, and its parameters ar- 
e also estimated by the generalized Pareto distribution. 

According to the POT model and the generalized Pareto distribution,   for a given threshold 
k kY X   , GP3 degenerates into kY a GP2 distribution that is a over threshold sequence. For this 

article, the error extremum specifically refers to random samples with errors greater than the threshold. 

The generalized Pareto distribution can effectively utilize a certain number of extreme observations 
and estimate parameters for observations that exceed the threshold. 

It should be pointed out that for the same random sample sequence, if the maximum value approxi-
mately follows the generalized extreme value distribution (GEV), then the excess approximately fo- 
llows the generalized Pareto distribution (GPD) and has the same shape parameters. 

4. Selection of Optimal Threshold for Exceeding Limit 

The selection of the overrun threshold  for the POT model, if the threshold is too large, the numb- 
er of overrun sequences will decrease, leading to an increase in the variance of the parameter estim- 
ation. If the threshold is too small, the number of out of range sequences will increase, and the fitti- 
ng effect on the tail of the data will deteriorate. It cannot guarantee the asymptotic nature of the POT 
model and the generalized Pareto distribution, and the parameter estimation is biased. 

This article uses the sample average exceedance function graph to select the optimal exceedance th- 
reshold. According to the definition of conditional expectation, there are: 

 

         ( )e E X X                                    (6) 

 

It is called the average transfinite function of all samples with ( )e   random variables x  exceeding 
the threshold  . 
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Select a series of thresholds and construct a sample average exceedance function graph from a point 
set ( , ( ))e  . If a certain threshold 0 , the excess distribution approximately follows the generalized 
Pareto distribution with parameter 0( ),   , then for values   greater than 0 , the sample average 
excess function fluctuates near a straight line, indicating that the selected threshold is appropriate. 

Due to the need to draw a graph and determine whether the curve is a straight line for the transfinite 
mean function, it has great subjectivity. Therefore, this article uses the kurtosis coefficient method to 
supplement it. 

The kurtosis coefficient method reflects the sharpness of an image, and the larger the kurtosis, the 
sharper the center point on the image. In the case of the same variance, the variance of most values 
in the middle is very small. In order to achieve the same goal as the normal distribution variance, 
some values must be further away from the center point, which is known as the heavytailed pheno- 
menon. When the kurtosis value is greater than 3, it indicates that the distribution has a heavy tailed 
feature, when the kurtosis value is less than 3, it has a light tailed feature, and when the kurtosis val- 
ue is equal to 3, it indicates a normal distribution. 

Defined based on kurtosis values: 
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Among them, x  is the sample mean. 

Criterion for kurtosis coefficient method: If the kurtosis value is greater than 3, the one with ix x  
the highest absolute value ix will be removed from the sample sequence until the kurtosis value is 
less than 3. At this point, the threshold is the maximum value in the remaining sequence [6], which 
is: 

 

 max , (1, )n kx k n   . 

5. Maximum Likelihood Estimation of Generalized Pareto Distribution 

After the threshold is determined, the logarithmic likelihood function for the error exceeding the limit 
i i i n ky x x x     of the DC charging station following the generalized Pareto distribution is: 
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           (10) 

 

After solving, the estimated values of the parameters can be obtained. 

6. Upper Limit Estimation of Error Extremum 

6.1 Upper Limit Estimation of Error Extremum 

The generalized Pareto distribution and the generalized extreme value distribution have the same 
shape parameters, and the error distribution of the DC charging station is within a limited range be- 
tween the threshold and the extreme value. Therefore, the shape parameter must be less than zero. 

According to the generalized extreme value distribution type in Table 1, the extreme values of the 
sample sequence meet the GEV III type distribution conditions, and there is an upper bound on the 
extreme values, namely: 
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6.2 Estimation of Hazard Rate Function 

If the distribution function of a random variable X is ( )F x  and the probability density function is 
( )f x , then the hazard rate function of the generalized Pareto distribution is: 

 

      
( )

( )
1 ( )

f x
x

F x
 

                                (12) 

 

The hazard rate function is a monotonic function x , when 0  , ( )x  monotonically decreasing; when 
0  , ( )x  was a constant; when 0  , ( )x  monotonically increasing. 

The meaning of the hazard rate function referred to in this article is the probability that the operating 
error of the DC charging station will develop in the direction of exceeding the threshold  when the 
error random variable sequence is greater than the threshold  . Obviously, the lower the danger rate, 
the higher the measurement accuracy of the DC charging station, and vice versa, the poorer the 
measurement accuracy. 

7. Example Analysis 

In order to verify the effectiveness of the method proposed in this article, all detection data were ob- 
tained through on-site detection equipment. Based on the data of 459 DC charging stations on site, 
the collected data includes: working error, indication error, and payment amount error. The error w- 
arning indicators are developed using the method described in this article. To simplify the calculati-
on, this article only takes the working error as an example. 

To ensure the accuracy of threshold selection, the average exceedance function graph is used to det-
ermine the threshold range, and the kurtosis coefficient method is used to supplement it. 

According to formulas (6) and (7), extract the detection data of the working error (positive value) of 
the on-site charging station to calculate the mean value of the exceeding limit. The function diagram 
of the average exceeding amount is shown in Figure 3. 

 

 
Figure 3. Over limit mean graph 

 

From Figure 2, it can be seen that the threshold range of the working error (positive value) is 
approximately linear between regions [0.3,0.5]. Enlarge this interval as shown in Figure 4. After 
observation, it is determined that the threshold is selected within ( )e   and  the linearly changing 
interval [0.41,0.48]. However, the optimal threshold interval still has a certain degree of subjectivity, 
and further judgment of the threshold needs to be made using the kurtosis coefficient method. 
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Figure 4. Enlarge the over limit mean 

 

Based on the kurtosis coefficient method to determine accuracy and the actual situation of the sam- 
ple data, the threshold for working error (positive value) is selected as 0.4878, and the threshold for 
working error (negative value) is selected as 1.1454. 

The maximum likelihood method is used to estimate the shape and scale parameters of the GP2 dis- 
tribution, and according to formula (3), the distribution function of the working error can be obtain- 
ed as: 
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The distribution function is shown in Figure 5, and the specific parameters are shown in Table 3. 
 

 

Figure 5. Generalized Pareto distribution of working error 
 

When the shape parameter of the working error (positive value) is within the 95% confidence inter- 
val of [-0.5461, -0.2439], it belongs to the light tailed distribution, so the working error (positive va- 
lue) has a limited right endpoint, which means there is an upper limit. Figure 6 shows the hazard ra- 
te function of the generalized Pareto distribution under different threshold conditions. 
 

 

Figure 6. Hazard rate functions with different thresholds 
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It can be seen From Figure 6,when 0  , as the threshold increased, the risk rate gradually decrea- 
sed, but the downward trend gradually slowed down. When the operating error (positive value) of the 
DC charging pile follows the generalized Pareto distribution and belongs to the light tailed dis- 
tribution, individual larger errors have little impact on the overall measurement accuracy of the bat- 
ch of charg- ing piles. However, compared to a certain charging station sample individual, if it is gr- 
eater than the upper limit of GEV III extreme value, it should be taken seriously. 

8. Conclusion 

The results indicate that the error data of DC charging stations can be well fitted using the generali- 
zed Pareto distribution, and the probability of exceeding the threshold risk is given, which adds a n- 
ew approach to determining the accuracy prediction of DC charging station measurement. 
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