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Abstract 
The Riemann integral can be seen as making a division in the domain of definition of the 
integral, while the Lebesgue integral is making a division in the domain of values. When 
performing the division, the Riemann integral may result in huge amplitudes and, as a 
consequence, there is not Riemann integrability. This shortcoming is circumvented by 
the Lebesgue integral, which divides the value domain in such a way that the amplitude 
is satisfactory. In this paper, we introduce the concept of interval measure of the domain 
of definition of a function, and use the countable and additive properties of the Lebesgue 
integral to solve the Riemann integral problem for partially discontinuous functions. If 
the Riemann-producible functions are not closed to the limit operation, then it is 
possible to calculate the columns of those functions by exchanging the symbols for the 
integral and the limit. However, the conditions that must be met in order for integral and 
limit operations to be exchangeable are fairly stringent. The Lebesgue integral improves 
the solution to this problem by easing some of the conditions that must be met for 
exchangeability. 
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Partition. 

 

1. Introduction 

Wei, Y. et al. (2012), proved that: the Lebesgue integral of any non-negative Lebesgue integrabel 
function can be expressed as a Riemann integral of a monotonically decreasing function (including 
Riemann flaw integral, Riemann infinite interval integral); the integral of any Lebesgue integrable 
function can be expressed as the Riemann integral of two monotonically decreasing Riemann integral 
of the difference of two monotonically decreasing functions on (0,+∞), or a Riemann integral of a 
monotonically decreasing function on (-∞,0) and (0,+∞) [1]. 

Rongli Huang (2015) pointed out that Le Berger's improvement of the old theory of integration started 
from changing the steps required for the procedure of calculating definite integrals, and it was from 
this idea that he succeeded in promoting the Riemann integral. By comparing the advantages and 
disadvantages of Riemann integral to explore the central idea of Lebesgue’s integral, students can 
deeply understand the framework and meaning of Lebesgue’s integral [2]. 

Zhang Liying (2015) illustrated that the L-integral is not a generalization of the R-invariant integral 
by two examples, and also explored the relationship between the L-integral and the R-invariant 
integral, giving a sufficient condition between the L-integral and the R-invariant integral when the 
function satisfies certain conditions, which gives us a deeper understanding of the two integrals [3]. 

Liu Song (2016) elaborated the limitations of Riemann integral and the superiority of Lebesgue 
integral in terms of the continuity of the integrabel function,the integral limit theorem,the 
completeness of the space of integrabel functions and the fundamental theorem of calculus [4]. 
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Zhang, Y.L. and other researchers (2020), pointed out the relationship between the Lebesgue integral 
and the Riemann integral by comparing them analytically, and gave the condition that the Lebesgue 
integrabel function is Riemann integrabel [5].  

2. Analysis and Argumentation 

2.1 Definition of Riemann Integral 

2.1.1 The Following First Defines a base 𝔅 on the Set X 

Let X be a non-empty set and     ,     be the power set of   satisfying the following two 

conditions. 

1)  which   . 

2) 1   , 2    , (there exists   , such that       ). 

At this point,  is said to be a base of the set  . 

2.1.2 On the Limit of the Base 

Let  be a nonempty set,  be a base of   ,    f  , where ˆ    , an open neighborhood 

U of any A, and there exists   such that   f U , is said to be  f x  about  in the limit of , 

denoted  lim


 f x , and interpreting the above equation in the definition of  ,    ,there 

exists   such that    f x   x . 

2.1.3 Subdivision 

Let 0 1 2 nx , x , x , ... .. ., x   a,b  , satisfy: 0 1 na = x < x < ... < x = b , 

Then call   i 1 i i= x ,x =  (where i = 1,2, ...,n  ) as a subdivision of  a,b , and the maximum 

interval length || ||  of the subdivision G is called the granularity of the subdivision G and for each

 i 1,2,...,n  , take  i i  , which the subdivision   ,  with sign points for the interval [a,b] is 

given, referred to as the division with marker   ,  , where      2 n, ,...,  , the following set is 

defined. 

=          , ,  is a differentiation with maker points for a,b   , differentiation with 

maker points a,b ,    , order         , . 

The order          P :  , the following can be verified  is a base of .  

Verify that (i),    , we can take the n-equivalent partition of the interval  a,b  , when n is 

sufficiently large such that || || 
 

b a <
n

 , so that the n-equivalent partition falls into   , i.e. 

 . 

Verify that (ii), 
     ,  , taken from  min     ,  , then 

         , so  is a 

base of . 

2.1.4 Riemann Sum 

If f(x) is defined on[a, b], (𝔖 ,𝜉 ) is a labeled subdivision and the Riemann sum is: 

 

         
n

i i
i=1

f; , f  
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2.1.5 Riemann Integral 

If Riemann sum σ(f; 𝔖, 𝜉) along the basis 𝔅ஐ exists (finitely) in the limit of f(x), it is said that f(x) 
is[a, b] f(x) is Riemann integrable over [a,b]. 

 

   lim


   
b

a f x dx f; ,  

 

Since‖𝔖‖ → 0 denotes𝔅ஐ is natural, so the Riemann integral has another expression: 

 

 

 

This expression is the way most domestic mathematical analysis textbooks give the definition. 

Theorem 1 The above two ways of Riemann integration are equivalent. 

Proof: There exists  such that  lim





   f; , . 

⇔ The existence of ,     , exists    ,     ,  ,       f;G , . 

⇔The existence of ,     , the existence of   ,   a,b with the subdivisions   ,  ,

  || ||  , such that       f;G , . 

⇔ The existence of ,      , the existence of     ,   a,b  subdivision ,   i i

  || ||   such that       f;G , . 

 

 

2.1.6 Darboux Grand Sum and Darboux Minor Sum 

Assume that f(x) is a bounded function of [a,b] and subdivide [a,b] into  0 1 n: a = x < x < ... < x = b  ,
supiM =   i i{f(x ) : x x , x ]}  ,  i i im = in f{f(x ) : x x , x ]} ,denoted i i ix ,x =Δx  , and  max   i ix ,x  , 

where  1 i n. 

 

  
n

i i
i=1

S P = M Δx  

  
n

i i
i=1

S P = mΔ  

 

Darboux grand sum and Darboux minor sum, respectively. 

2.1.7 Sufficient and Necessary Conditions for Riemann Integrability 

The limit of Darboux major sum is equal to the limit of Darboux minor sum, i.e. 

 

   lim lim
 

S P = S P  

   
0

lim


a 


n
b

i i‖ ‖ i=1
∫ f x dx= f | |
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2.2 Definition of the Lebesgue integral 

Let E be a measurable set and m(E)< , and  f x  be a measurable function on E and is bounded. 

We can set    f(x)  , take 0 1 nC : A = y < y < ... < y = B as any division of  , , write

 i i iΔy = y ,y  , and let  iC ) = m axΔy  where  1 i n , take any  i iE  , and write the summation as: 

 


n

i i
i=1

S(C)= f( )m(E )  

 

When
0

lim
 (C)

S(C)  is a finite value, then f(x)  is said to be Lebesgue integrable onE   

Of course, there are other ways to define the Lebesgue integral, for example, by first defining the  
Lebesgueer integral of a nonnegative simple measurable function, then deriving the Lebesgue integral 
of a nonnegative measurable function based on (the property that a nonnegative measurable function 
can be approximated by a column of nonnegative simple measurable functions), and finally using

 f(x) = f (x) f (x)  , where f (x )  is the positive part of f(x)  , f (x )  is the negative part of f(x)  , and
f(x)  is the measurable function on the measurable setE to derive the general Lebesgue integral of 
the measurable function. 

 E E E∫ f(x)dx=∫ f (x)dx ∫ f (x)dx . Note that 
E∫ f (x)dx  and 

E∫ f (x)dx  cannot be positive or negative 

infinity at the same time, and if E∫ f(x)dx  is a finite real number, f(x)  is said to be Lebesgue integrable 
onE. 

2.3 Comparison of Riemann Integral and Lebesgue Integral 

2.3.1 Expansion of the Class of Integrabel Functions 

Example 1 Dirichlet function, 
  

   




1,x Q ,1
D(x)=

,x Q ,10
. 

It is known that D(x) has amplitude 1 on each small interval of 0,1  and the amplitude on each small 

interval is too large to be Riemann-integrable, according to the additivity of the region of the 

Lebesgue integral,      0,1 0,1 Q 0,1 Q∫ D(x)dx=∫ D(x)dx ∫ D(x)dx=0  , so D(x) is Lebesgue integrable. 

Lemma 1 f(x)  is continuous on the measurable set E⟹ f(x) is a measurable function. 

Proof: According to the equivalent inscription of function continuity, the open set inO ,  makes
f (O )  an open set. Since the open set in   can be written as a sum of countable two non-

intersecting open intervals, each open interval is a measurable set, then the open set in  is also a 
measurable set, so f (O )  is a measurable set, so f(x)  is a measurable function. 

Theorem 2 ( Lebesgue's criterion for Lebesgue integrable) f(x)  is a bounded function on a,b  and

f(x)  is Riemann-integrable on a,b  ⇔ f(x)  is the discontinuity at the set of zero measurements of 

 a,b . 

Theorem 2 can be used to quickly determine the integrability of the Riemann function, because the 
Riemann function is continuous at irrational points and discontinuous at rational points, but the 
measure of the rational points is zero, so the Riemann function is Riemann-integrable. 

Theorem 3( Lebesgue integral is a generalization of the Riemann integral) If f(x)  is Riemann-

integrable on  a,b  , then f(x)  is  Lebesgue-integral on  a,b Proof: Since f(x)  is Lebesgue 
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integrable on  a,b  , by Theorem 2, the discontinuity of on f(x)  a,b  is the zero measure set, and let 

the zero measure subset of a,b  beZ , then f(x)  is continuous on a,b Z  , and by Lemma 1, f(x)  

is a continuous function continuous on a,b Z  , and since f(x)  is Riemann-integrable on a,b  , 

then f(x)  is Riemann-integrable on  a,b Z  , then f(x)  is bounded on  a,b Z  , and by the 

monotonicity of the  Lebesgue integral, f(x)  is  Lebesgue-integrable on  a,b Z  , and since the 

zero measure subset does not change the value of the  Lebesgue integral, f(x)  is  Lebesgue 

integrable on  a,b .  

However, in general, the Lebesgue integral is not a generalization of the Riemann integral. 

Example 2 Assume that f(x) 
sin x

x
 ,  x  , f(x)  ,  x . 

(R)
 
0∫ f(x)dx  , (L)  [0,+ )∫ f(x)dx . 

The function is Riemann integrable, but the fuction is not Lebesgue integrable. 

Theorem 4 (Ruzin's Theorem) If f(x)  is a finite measurable function on  nE , almost everywhere,
    , there exists a closed setF ,  m(E F)<  inE such that f(x)  is a continuous function onF  

By Theorem 3, we can indeed Riemann-producible functions must be Lebegg-producible, thus 
expanding the class of productible functions. From Theorem 4, almost everywhere finite measurable 
functions are essentially continuous functions, then Lebegg-producible functions are essentially 
continuous functions, expanding the class of productible functions. 

2.3.2 Exchange of Integrals and Limits 

The Riemann integral can be said to have a fatal flaw in that it is not closed to limit operations and 
requires the addition of some stronger conditions to ensure that the limits and integrals are 
exchangeable in order, whereas the Lebesgue integral is obtained by controlling the convergence 
theorem, where the limits and integrals are exchangeable, and the conditions in the control 
convergence theorem are relatively weak. 

Theorem 5 Let each term of the function column  nf (x) nf (x)  be continuous on a,b  and converge 

uniformly on a,b  , then: 

 

lim lim
 

b a
a n bn n

∫ f (x)dx =∫ f(x)dx  

 

Theorem 6 ( Dominated convergence theorem) LetE be a measurable set and let f(x)  and nf (x)  both 
be measurable functions onE , if the following conditions hold: 

 n n=1
f (x) OnE a.e converges to f(x) . 

There exists g L(E)  such that nf ( x ) g ( x )  , a.e, n=1,2, ...  
Then both f(x)  and nf (x)  are integrabel, and we have: 

 

lim


E nn
∫ | f (x) f(x) |dx =0  

 

thereby having: 

 



International Core Journal of Engineering Volume 8 Issue 9, 2022
ISSN: 2414-1895 DOI: 10.6919/ICJE.202209_8(9).0015

 

99 

lim lim
 E n E E nn n

∫ f (x) ∫ ∫ f (x)dx = f(x )dx = dx  

2.3.3 Absolute Integrability 

Theorem 7 f(x)  is a measurable function onE , f L(E)  | f | L(E) . 

Note: Since 
E∫ f (x)dx  and 

E∫ f (x)dx  cannot be positive or negative infinity at the same time, at least 

one of them is a finite real number. 

Proof:  f L(E)  
        E E E∫ f(x)dx=∫ f (x)dx ∫ f (x)dx ∫ ∫+ -f (x)dx , f (x)dx

 f (x ) L (E)  ,  f (x) L(E) . 


 E E E∫ | f(x)|dx=∫ f (x)dx ∫ f (x)dx  E∫ | f(x ) | d x . 

This result does not necessarily hold for Riemann integration, for example, let the functions
  

   




1,  x Q ,1
F(x)=

,x Q ,1
 , be obvious thatF(x)  is not Riemann integrable, but | F(x) |  is Riemann 

integrable. 

2.3.4 Countable Additivity of the Integration Region 

Theorem 8 , 

1




 n
n

E= E
 , nE  are two non-intersecting measurable sets, if f(x)  on E is nonnegative 

measurable or integrable, then: 

 

1
n

n

E






   


n=1
f(x)dx f(x)dx= f(x)dx   

n

E
E

 

 

Proof: Let f(x) on Eis non − negative measurable function , such that
1

1










 





p

n
n

n p

n
n

f(x),  x E
f (x)=

0,x E E
. 

Then  n n=1
f (x)  is a non-negative measurable function sequence on E, and it converges with f on E 

incrementally. According to Levi's monotone limit convergence theorem, 

 

1 1

lim lim lim lim

 



   
       

 
f(x)dx f (x)dx = f (x)dx f(x)dx f(x)dx f(x)dx   

p p
n n

n n
n n

p

n nn n n n
n=1 n=1E E E E

E E

= = =
 

 

where the first equal sign uses Levi's monotone limit convergence theorem, and the fourth equal sign 
uses finite additivity, and then look at the case of setting f(x) is on 𝐸′𝑠 the integrable case. 

 

 E E E∫ f(x)dx =∫ f (x)dx ∫ f (x)dx =
 

 n n

+
E E

n=1 n=1
∫ f (x)dx ∫ f (x)dx

 
 n n

+
E E

n=1 n=1
= ∫ [f (x) f (x)]dx= ∫ f(x)dx  
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Then the Lebesgue integrable consists of countable additivity, while the Riemann integral does not 
have countable additivity, but the Riemann integral has finite additivity. 

Example 3 Set f(x) =1E = (0,1]  
*E =

1( ,1]
n+1

i
1 1E = ( , ]

1+i i
   i= 1,2,··· 

E=
1

i
i




E       , *E

=
1

i
i
   
n

E   ，i jE E = i j . 

*E

n∫ f(x)dx =
n+1

    , i

n

E
i=1

∫ f(x)dx=1 (finite additivity example). 

1 1 1 1 1 1

2 2



      
   i 1 2E E E

i=1
∫ f(x)dx=∫ f(x)dx+∫ f(x)dx+···=1+ ···

n n
  (No countable 

additivity). 

The Riemann integral is based on the Jordan measure, which has only finite additivity, while the 
Lebesgue integral is based on the Lebesgue measure, which has countable additivity, which is 
reflected in the fact that the Riemann integral has only finite additivity and the Lebesgue integral has 
countable additivity. 
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