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Abstract 
For practical applications of semantic segmentation tasks, such as autonomous driving, 
we hope that it should be able to process high-resolution images quickly and with high 
accuracy. This is a challenging goal. In order to design such an algorithm, we need to 
solve the fusion problem and contradiction between high-resolution spatial positioning 
information and low-resolution semantic classification information in the semantic 
segmentation task. For the above problems, we propose the multiscale convolution 
based repeat fusion network (MC-RFNet). For the problem of missing multiscale 
information and insufficient receptive field, we propose the separable multiscale 
convolutional module, so that each layer of the network has the ability to capture 
multiscale information. In view of the situation that shallow information is difficult to 
directly recover resolution the high-resolution feature map, we design the repeat fusion 
module of high and low resolution. On the one hand, we reduce the occupation of 
computing resources generated directly calculated on high-resolution feature maps, and 
on the other hand, high-resolution maps gradually have deep semantic information 
through fusions and convolutions. 
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1. Introduction 

Semantic segmentation is one of the basic tasks of computer vision. It plays an important role in 
medical image processing, automatic driving, fault point detection and other practical applications. 
In recent years, with the development of deep learning technology, convolutional neural network has 
been applied to image segmentation, which is far better than the traditional image segmentation 
methods.  

At present, most of our semantic segmentation methods based on convolutional neural network are 
developed on the basis of FCN. At present, there are many kinds of semantic segmentation structures, 
which can be divided into single branch structure, multi-branch fusion structure and multi branch 
parallel structure. For the single branch structure of dilation backbone plus module that can get 
context information, such as DeepLabV3+[2] and PSPNet[3], the backbone is used to extract 
semantic information. Finally, the spatial information in the high-resolution stage is fused with the 
dense semantic information extracted by the multi-scale context module to extract the segmentation 
prediction map. For the multi-branch fusion structure, such as Unet[22], ICNet[9], SegNet[18] and 
ENet[21], the output of each stage of the backbone network is fused with the output of adjacent stages, 
and finally the fusion maps are used to prediction. The multi branch parallel structure like HRNet[23], 
is similar to multi-branch fusion, and the difference lies in the existence of parallel structures. It 
maintains a high-resolution feature extraction branch, and there are other three parallel branches with 
different resolutions. The four resolution branches of the multi branch fusion structure correspond to 
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the four stages of the general network, which fuse features and exchange information through layer 
by layer feature interaction. 

Recent methods are not satisfied with just improving the performance of the network, and turn to the 
trade-off between performance and speed. In order to improve the speed and accuracy of the model, 
many excellent methods have emerged, such as the BiseNet[11][15], the multi-resolution fusion 
structure MSFNet[16] and DFANet[14] inspired by ICNet[9], BiseNet[11], and the double branch 
parallel structure DDRNet[4] inspired by HRNet[23]. The advantages and performance of double 
branch fusion structure, double branch parallel structure and multi-resolution fusion structure can be 
seen. However, such a structure requires the designer to have rich experience and a lot of experimental 
adjustment. It is often difficult to have research continuity in a well conceived model structure, and 
the problem of such structure is difficult to improve. The advantage of single branch is obvious. It 
has no redundant and repetitive design. 

Therefore, in order to solve the above problems, we redesign the single branch structure and propose 
multiscale convolution based repeat fusion network (MC-RFNet) to solve the problem of lack of 
multi-scale information and insufficient receptive field. We propose a separate multi-scale 
convolution module, so that the network of each layer has the ability to capture multi-scale 
information. In view of the difficulty of directly recovering the resolution of shallow information, 
and the problem of large computational cache and large amount of computation in the backbone 
network expansion network, we design the repeat fusion module of high-resolution and low-
resolution. On the one hand, it reduces the occupation of computing resources generated by the direct 
calculation of high-resolution feature map. And on the other hand, it makes the high-resolution map 
gradually have deep semantic information through the combination of fusion and convolution. 
Because the overall effect of FCN[24] structure is based on the classification of the backbone network, 
in order to ensure that the backbone network can extract features in the original way without being 
affected by various quick connections used for segmentation in the mode. We also add an auxiliary 
loss function at the end of 1/16 block. It is used to ensure the optimization of backbone network. 

Our main contributions are summarized as follows: 

We propose a multi-scale pooling convolution module to replace the basic convolution. Affected by 
PSPNet, we use pooling convolution to realize multi-scale, which increases the receptive field and 
reduces the amount of calculation. It is a very efficient module with negative growth of calculation. 

We propose a repeat fusion module that extracts semantic information, maintains spatial information 
and fusion them. The module can not only obtain spatial information, but also extract features with 
low consumption. In addition, the repeat fusion design improves the degree and efficiency of 
information fusion. 

According to the short-term dense concatenate strategy, we reconstruct the backbone network and 
fusion structure, which not only improved the performance of the network, but also increase the 
running speed of the network. 

The experimental results show that our network is effective, and the performance speed balance 
between Cityscapes dataset and Camvid dataset is better than several representative methods. 

2. Related Work 

In this section, we will discuss three aspects that are most relevant to the work of this paper, namely, 
multi-scale module, real-time model, and STDC structure. 

2.1 Multiscale Module 

As we all know, classical models without real-time rely on context extraction module to improve the 
ability of capturing semantics and receptive field of the model. For example, in DenseAspp[25], 
densely connection and pyramid pooling of atrous space are used to capture multi-scale context 
information. The use of densely connection has doubled the effect of atrous convolution and greatly 
improved the capture of receptive fields. In addition, multi-scale convolution is used to extract 
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features in MixConv[5], which can not only ensure the acquisition of receptive fields, but also 
explicitly control the growth of parameters. 

2.2 Real-time Semantic Segmentation 

The design of real-time semantic segmentation model has taken a completely different route from 
that of high-performance network from the beginning. For example, when the model without real-
time uses a quarter based prediction map as the output, ENet[21] uses a symmetrical full resolution 
structure for prediction. Then ICNet[9] pioneered the design method of using multi branches and 
carefully designed fusion structure. Then there are the well-known double branches, the exquisitely 
structured MSFNet[16] and DFANet[14], and the DDRNet[4] with the optimal balance. This method 
also continuously improves the upper limit of trade-off.  

2.3 STDC 

The proposal of densely connection changes the feature extraction route that determines the quality 
of feature transmission based on the number of feature maps, and greatly reduces the number of 
feature layers. However, the disadvantages of densely connection are also obvious, which requires a 
lot of cascade and fusion structures. The computational cost has not been completely reduced. The 
proposal of short-term densely connection shows us a scheme of dense concatenate eclectically. 
Although there is no significant reduction in the number of feature layers, it provides more dense 
features under the same amount of calculation, which is a very efficient connection strategy. 

3. Our Proposed Method 

In this section, we describe the design ideas and details of our model in detail.  

3.1 Overall Structure 

 
Figure 1. Structure diagram of our MC-RFNet 

 

In this subsection, we describe our proposed multiscale convolution based repeat fusion network 
(MC-RFNet), with the network model shown in the figure 1. Among the many previous network 
structures, the FCN model structure has the least redundancy, so our model is designed based on the 
single-branch structure. To ensure that the network has sufficient running speed and small 
computational consumption, we choose to design the lightweight classification network 
MobileNetV2[1] as the baseline model. Following the five subsampling of the classification network, 
we introduce the model into five stages. (a) First, MC-RFNet use a 3×3 convolution instead of the 
three bottleneck blocks in the first two layers of MobileNet2. (b) In subsequent stages all bottleneck 
blocks are replaced with our proposed multiscale pooling convolutional module (MSPM). (c) Finally, 
we design the fusion module to integrate spatial and semantic information. In stage 4 we use 1/8 and 
1/16 resolution maps to fusion, whereas in stage 5 we use 1/8 and 1/64 resolution maps to fusion. 

In general, both lightweight networks or networks like ResNet18 are difficult to provide enough 
receptive fields in semantic segmentation tasks, and they often need to cooperate with certain modules 
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after the output of the backbone, such as ASPP[2], PSP[3], DAPPM[4], etc. Therefore, we design a 
multi-scale separable convolutional module to break through the previous receptive fields restricted 
by the number of layers. Second, we design a feature extraction structure for the mixing of spatial 
and semantic information in the semantic segmentation task for efficient high and low resolution 
fusion. The fusion of the two stages can not only control the growth of computation but also ensure 
the effective fusion of spatial and semantic information. Below, we further introduce the multi-scale 
pooling convolutional modules, and repeative fusion module used in the network. 

3.2 Multiscale Pooling Convolution Module 

Multiscale pyramid modules are often used in models without realtime to compensate for the lack of 
backbone networks such as[2][3]. Here we use this approach to solve problems in real-time models. 
We first review the operation of MobileNet2's basic module-depth separable bottleneck block 
(Inverted Residuals and Linear Bottlenecks). The bottleneck block is divided into three operations, 
extend the feature maps to a point convolution (kernel=1) of 6 times the number of input layers, 
extract the layer convolution of features, and compress the feature graph and perform the point 
convolution of linear operations. 

Next, we introduce our multiscale module. The processing steps of our module are described in the 
figure 2, where we divide the layer convolution of the feature graph extension into four parts, with 
the first part being 5 / 8 and the remaining three parts being 1 / 8, respectively. Then, the three parts 
are pooling with steps(2, 4, 8), and last the four parts are concatenate to extract the features. The 
resulting feature map is then restored to the same resolution, thus we can obtain four different scales. 
We know that, using pooling to obtain multi-scale information is one of the lowest computational 
costs, like used in the PSPNet[3]. Another way to obtain multi-scale information is to change the 
scale size of the convolution kernel (such as ASPP[10], Mixconv[5], Crosformer[6], et al.). This 
approach also gives access to multiscale information. But the disadvantage is that they greatly 
increase the computation, whether increasing the dilation rate or increasing the size of convolution 
kernel directly, they both increase the amount of calculation. 

 

 
Figure 2. Multiscale pooling convolution modules 

 

Another effect of multi-scale is to increase the receptive field. The way to increase receptive field is 
often to add context extraction module behind the backbone network. The significance of multi-scale 
convolution module is to break up the whole into parts, and ensure that the features from the backbone 
network can obtain sufficient context information. Acquiring receptive fields at an early stage is more 
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helpful for the backbone network to extract features, and the whole network does not need to add 
additional context modules. 

 

 
Figure 3. Repeat fusion module. 

3.3 Repeat Fusion Module 

As mentioned above, the key to the network structure of semantic segmentation is to realize the 
effective fusion of high-resolution spatial information and semantic information. In the single branch 
fusion structure represented by FCN[24], multi-branch fusion represented by ICNet[9], HRNet[23] 
and double branch parallel structure represented by DDR[4], we believe that the single branch fusion 
structure has the highest efficiency, and the other two structures are redundant, as the single branch 
is more suitable to explore the further development of real-time semantic segmentation. However, 
the single branch structure often does not integrate the spatial information and the semantic 
information very well. So we propose the repeat fusion module. 

The part of the dashed box in the figure 1 is our repeative fusion module, and we divide the input 
information into high and low resolutions to maintain spatial information and further extract semantic 
information. The high-resolution part uses simplified bottleneck operation to minimize computing 
consumption, in the low resolution part, feature extraction is carried out first, and concatenate fusion 
is carried out at the end of the stage. 

The specific operation steps of our two fusion modules are shown in the figure 3, and the two stages 
of the fusion module operation are different. We divide the seven separable bottleneck blocks of stage 
4 into three groups in (1, 3, 3), reduce the number of channels in the third group, and concatenate the 
results of the three groups using the idea of short-time densely connection.This can also reduce a part 
of the amount of calculation, compared with directly using the output feature maps of the stage 4 or 
increasing the number of channels. In stage 5, we subsample the feature map to 1/64, and 
experimentally show that such an adjustment not only saves considerable computational consumption, 
but also improves the segmentation performance. 

4. Experiment and Analysis 

In this section, we first introduce our experimental setting, and then use experiments to verify the 
effectiveness of our proposed MC-RFNet. The experiment is mainly divided into three parts, the 
ablation experiment to verify the effectiveness of the module, the comparison experiment between 
our proposed MC-RFNet and other methods, and the final visual segmentation results display. 
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4.1 Experimental Setting 

In this section we present our experimental setup including training strategies, the evaluation datasets 
used and methods for infer measurements. 

(1) Training strategy: The multiscale convolution based repeat fusion network (MC-RFNet) is 
implemented using the paddle framework. In our experiments, we use the adam optimizer and 
polynomial decay (power is set to 1.2) to train our MC-RFNet. For data augmentation we use random 
cropping, random mirror, random luminance, contrast and color saturation variation. The scale 
variation for random cropping ranged from 0.5 to 2 with a minimum variation scale of 0.05. The 
range is 0.4. On the cityscapes dataset, we use two training strategies. One uses a round of training 
with a learning rate set to 0.003 and batchsize set to 6, and the original map with a resolution of 
1024×2048 is used for training. Because of the single GPU environment we used, and to reduce the 
negative effects of little batchsize, we use two rounds of training to improve our training results. In 
the first round, the learning rate is set to 0.003, batchsize is set to 24, using a half map with a resolution 
of 512×1024 for training. In the second round, the results of the first round are as pre-training 
parameters, using the original image with a resolution of 1024×2048, batchsize is set to 6, and the 
learning rate is set to 0.002 to perform fine-tuning experiments. On the Camvid dataset, the resolution 
of the training images is set to 720×960. The learning rate is set to 0.005 and the batchsize is set to 6, 
training the 8W Iters (about 1026 rounds). 

(2) Dataset-Cityscapes: The dataset used is the cityscapes dataset, which has 5000 finely annotated 
street view photographs and 19998 rough annotated crystal photographs with a resolution of 
1024×2048. According to the dataset provided by Cordts et al. In Cityscapes[19], there are 5000 fine-
labeled images with 2975 for training, 500 for validation, and 1525 for testing. The dataset contains 
30 categories, of which we use 19 categories in our experiments. 

Camvid: The second dataset is the cambridge drive label video database, a well-known street view 
dataset extracted from video sequences. The number and heterogeneity of observations are increased 
in the driving scene, and the new algorithm is quantitatively evaluated. There are 701 annotated 
images with a resolution of 720×960. In the following experiments, we use 101 for validating, 233 
for testing, and 367 for training. The dataset contains 32 classes, including 11 classes for training. We 
use the training set and validating set for training, and then test on the test set. 

(3) Inference speed measurement: Inference speed is measured on a NVIDIA 3090 GPU, by setting 
a batch size to 1, and using CUDA10.1 and Paddle2.2. We follow the test code provided by the 
PaddleSeg to make the exact measurements.We run 1000Iters on the same network at input resolution 
2048×1024 and CamVid with input resolution 960 * 720 and reporte the average time to eliminate 
chance. 

4.2 Ablation Experiment and Analysis 

Using our MC-RFNet model as the baseline model, we conduct several groups of ablation 
experiments with multiscale pooling convolution module, repeative fusion module, and short-term 
dense concatenate strategy used in the fusion module, and the experimental setting follow fixed 
conditions. It is performed on the cityscapes dataset, using a single-round training strategy. Our 
results are averages obtained over multiple experiments.The experimental results are shown in the 
table 1, and we next conduct a comparative analysis on the role of different modules and the 
consumption of computational resources. 

(1) Multi-scale separable convolutional module: In this experiment, we compare the multi-scale 
convolutional module with the original module in Mobilenetv2. It can be seen from the first row 
without multi-scale module and the fourth row with multi-scale module in the table: The calculation 
amount is reduced, although the number of parameters has been slightly increased, the speed has also 
been slightly improved. More importantly, the mean IoU is greatly improved, and this result is enough 
to show the excellence of our multi-scale module and in line with our original design intention.We 
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successfully introduce multi-scale sampling into the basic module, not only without increasing the 
computational consumption, but also by improving the overall running speed of the model. 

 

Table 1. Comparison results of different ablation conditions 

Model Fusion1 MP STDC 
Speed 

(FPS) 

FLOPS 

(G) 

Params 

(M) 

MIoU 

(%) 

MPA 

(%) 

MC-RFNet √  √ 114.2 2.0 2.5 72.5 95.4 

MC-RFNet  √ √ 95.1 1.1 2.3 74.3 95.6 

MC-RFNet √ √  68.9 0.9 2.0 74.7 95.7 

MC-RFNet √ √ √ 104.5 1.9 3.0 74.8 95.7 

MC-RFNet √ √ √ 104.5 1.9 2.9 75.3 95.8 

 

(2) Repeative fusion module: In this experiment, we design a single fusion model and two fusions. It 
can be seen from the second row with single fusion and the fourth row with two fusions in the table: 
The calculation amount and parameters are increased, and the inference speed is reduced. Different 
from the increase of multi-scale module parameters, which is more non training parameters. What is 
added here are the training parameters for feature fusion, so it also leads to an increase in the amount 
of calculation. However, the increase of our parameters results in the improvement of performance, 
and there is no great sacrifice in terms of inference speed. 

(3) Short-term dense concatenate[8] fusion structure: The experiment is using the backbone of the 
original information flow transmission structure and STDC fusion structure what we designed. It can 
be seen from the third row without STDC fusion structure and the fourth row with STDC fusion 
structure in the table: Computation and parameters have reduced, inference time also improve, 
performance also increase. Because the number of feature layers in the backbone network at this stage 
is relatively little, and it needs to cooperate with the fusion design. If we only add the feature maps 
of a certain layer, it can not only increase the computational amount, but it can not increase the 
information. Therefore, we learn from the design idea of short-time intensive connection, which not 
only improves the design, but also improves the performance of the model as a whole. 

(4) Two rounds of training strategy: If we train the model with 512×1024 resolution image following 
the convention, it will not only take a long training time, but also be difficult to converge to the best 
advantage in the single GPU environment. With the use of the original image with 1024×2048 
resolution, it will affect the effect of the BN layer because of the little batchsize, and thus the overall 
performance of the network has a negative impact. So we design two rounds of training strategy, 
specifically for single GPU training. It not only effectively reduces the training time, but also ensures 
the overall performance of the network. 

4.3 Comparison Experiment and Analysis 

In this subsection, we compare our proposed MC-RFNet with other state-of-the-art methods in two 
benchmark datasets: the cityscapes dataset, and the camvid dataset. 

(1) Cityscapes dataset: We show the segmentation accuracy of our model on the validation set and 
test sets, as well as the inference speed on the test set. The segmentation accuracy we show on the 
validation set is the optimal result obtained by training using the training set alone. We then train our 
model using the set of training and validation sets down under the same training strategy. We then 
evaluate the accuracy of the segmentation on the test set. Inference time measurements are performed 
on a single NVIDIA 3090 GPU. A comparison of our proposed MC-RFNet and the state-of-the-art 
methods is presented in Table 2. Contains the ICNet[9], ERFNet[10], Fast-SCNN[12], SwiftNet[13], 
Bisenetv1[11], BiseNetV2[15], DFANet[14], MSFNet[16], SFNet[20], and our proposed MC-RFNet. 
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As shown in the table 2, our method achieves mean IoU of 75.4 under 104.5FPS. This is the best 
balance right now. These results are even higher than the algorithm segmentation accuracy for some 
heavyweight segmentation models. We note that some methods for heavy-weight segmentation 
models may employ some validation assistance techniques to improve segmentation accuracy, such 
as multi-scale testing and sliding window strategies. This improves accuracy, but is a waste of time. 
To care for the inference time, we do not adopt this strategy. 

 

Table 2. Comparison experiments on Cityscapes 

Model 
Input Scale 

Backbone 
MIoU(%) 

Speed(FPS) 
 val test 

ICNet 1.0 no - 69.5 30.3 

ERFNet 0.5 no 70.0 68.0 41.7 

Fast-SCNN 1.0 no 68.6 68.0 123.5 

SwiftNet 1.0 Resnet18 75.4 75.5 39.9 

BisenetV1 0.75 Xception39 69.0 68.4 105.8 

BisenetV1 0.75 ResNet18 74.8 74.7 65.5 

BisenetV2 0.5 no 73.4 72.6 156 

BisenetV2-L 0.5 no 75.8 75.3 47.3 

DFANet 0.5×1.0 no - 71.3 100 

MSFNet 1.0 no - 77.1 41 

SFNet(DF1) 1.0 no  74.5 74 

MC-RFNet 1.0 MobilNetv2 75.4 - 104.5 

MC-RFNet(x0.5) 1.0 MobilNetv2 72.88 - 130 

 

(2) CamVid dataset: We show the segmentation accuracy and inference speed of our model on the 
test set. By convention, we train on the set of training and validation sets, and then test on the test set. 
Measures of inference time are performed on a NVIDIA 3090 GPU using input images by 720×960 
resolution. A comparison of our method and the state-of-the-art methods is presented in the table 3. 
Contains SegNet[18], Deeplab[17], PSPNet[3], ICNet[9], Swiftnet[13], BisenetV1[11], 
BisenetV2[15], DFANet[14], SFNet[20], and our proposed MC-RFNet. As shown in the table, our 
method achieves mean IoU of 74.6 at 124 FPS. Our method has higher segmentation accuracy than 
most methods. The number method achieves the best balance among the twelve comparative methods. 

4.4 Visualize the Segmentation Results 

In this subsection, we show the visual segmentation results on the cityscapes dataset as in the figure 
3. With the four columns from left to right representing the input images, the output of SFMSNet 
with no multiscale module, the output of SFMSNet and the real labels, and figure 3 shows the 
comparison results. It can be seen that our multi-scale module is effectively improved in small-scale 
object segmentation, our method makes the contour of objects more complete and clear. However, 
for places where the front and back scenes are closely connected, the misclassification rate is still 
relatively high. In addition, because some of the real situation can not be described by the label, some 
local misclassification will be relatively high, like the little advertisement on the lamp pole. In 
conclusion, our method is relatively effective for the semantic segmentation task, and achieves a good 
balance. 
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Table 3. Comparison experiments on Camvid 

Model Backbone MIoU(%) Speed(FPS) 

SegNet VGG16 60.1 4.6 

Deeplab VGG16 61.6 4.9 

PSPNet ResNet50 69.1 5.4 

ICNet No 67.1 160 

Swiftnet Resnet18 72.58 - 

Bisenetv1 Xception39 65.6 175 

Bisenetv1 ResNet18 68.7 116.25 

Bisenet V2 No 72.4 124.5 

Bisenet V2-L No 73.2 32.7 

DFANet B Xception B 59.3 160 

DFANet A Xception A 64.7 120 

SFNet Resnet18 73.8 36 

MC-RFNet MobilNetv2 74.6 124 

5. Conclusion 

 
Figure 4. Visualized segmentation results on cityscapes val set. 
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In this work, we propose a multiscale convolution based repeat fusion network. By proposing a multi-
scale convolutional module, we greatly improve the receptive field of the model, solve the receptive 
field problem in the existing network and reduce the computation, while introducing multi-scale 
information to the model to increase the fitting ability of the model. Our repeat fusion module is 
designed to fuse the spatial and semantic information required for semantic segmentation in an 
efficient way. Extensive experiments show that our proposed MC-RFNet achieves high segmentation 
performance under the same computational conditions and inference time. 
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