Multi-Objective Optimization Method for Hybrid Ship Power System Capacity

Ziqi Lu^{1,a}, Xihuai Wang^{1,b} and Jianmei Xiao^{1,c}

¹College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China.

^a1184561362@qq.com, ^bwxh@shmtu.edu.cn, ^cjmxiao@shmtu.edu.cn

Abstract

Due to the intensification of environmental problems, the world has paid more attention to the environmental protection of ships. The use of renewable energy and energy storage system (ESS) can effectively reduce ship's fuel consumption and greenhouse gas emissions. The optimal sizing of new energy systems and ESS is crucial in a hybrid ship power system where the reduction of operating costs and CO_2 emission is important. This paper takes annual operating costs and emissions as goals, and proposes a multiobjective optimization method for the capacity configuration of hybrid ship power system, considering the influence of ship swing and ESS cycle life. Case studies on an electric propulsion ship that include photovoltaic (PV), wind turbine generation system and ESS are shown to prove the effectiveness of the proposed method.

Keywords

Hybrid Ship Power System; Renewable Energy; CO₂ Emission; Multi-objective Optimization.

1. Introduction

The increasing attention to environmental protection issues has led to stricter regulations on ship greenhouse gas emissions, improving ship energy efficiency and reducing emissions have become crucial research directions [1]. At the same time, the fierce competition in the global ship market also puts forward higher requirements on ship operating costs. Therefore, it's necessary to consider both economy and environmental protection when studying this problem [2].

Some methods have been proposed including route optimization, power management, the use of renewable energy and ESS, to solve this problem. An energy management optimization method which uses differential evolution (DE) algorithm to optimize the power distribution of ship generator sets for classic ships is proposed in [3], significantly reduced ship operating costs and CO_2 emissions. An optimized and control method for the ESS capacity in an electric propulsion ship is proposed to prove that the optimal capacity of the ESS can reduce the operating cost during the ship's entire lifetime in [4]. It has been proved that ESS containing supercapacitors and lithium batteries can significantly improve the ship power system with short operating cycle and severe load fluctuation in [5]. A novel multi-clustering algorithm is proposed to optimize ESS capacity for an all-electric ship considering uncertain power load and meteorological data along the navigation route in [6]. However, only single optimization objective is considered in [3] and [4]. The influence of ESS life on operating costs is ignored in [4]-[6]. Literature [6] did not consider the influence of ship swing on photovoltaic power generation.

In view of the shortcomings of the above literatures, this paper takes an electric propulsion ship with PV arrays, wind turbine generation system, ESS and diesel generator sets as an example, optimizes two targets of ship annual operating costs and CO₂ emissions with real meteorological data along the

navigation route, considering the above two effects. In order to calculate the optimal capacity of each components, the multi-objective differential evolution algorithm based on decomposition and multi-strategy mutation (MODE-DMSM) is utilized in this work, and the ship power load data is known.

The rest of this paper is organized as follows: Section 2 describes models of ship power system components. Section 3 formulates the problem. Section 4 shows the simulation results. Section 5 draws conclusions.

2. Hybrid Ship Power System Components

2.1 Hybrid System Structure

The ship power system includes diesel generator sets, PV system, wind turbine generation system and ESS. The electrical loads are mainly divided into propulsion load and other load. The structure of the ship power system is shown in Fig 1.

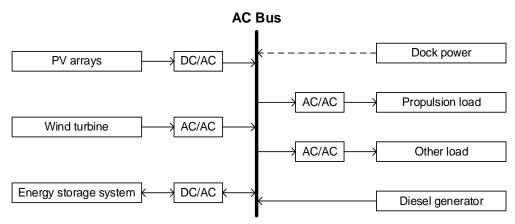


Fig. 1 Structure of ship power system

This ship takes 10 days to sail from Dalian in China to Singapore, four times a year for a total of 1920 hours. When the ship is anchored, all the power load is supplied by the dock power. In the end, the optimization involved 1608 hours a year, and the wind speed, solar irradiation, temperature and load curves were sampled hourly.

2.2 Models of System Components

2.2.1 PV Arrays

The output power of a photovoltaic (Photovoltaic, PV) arrays is mainly related to the solar irradiation, area of PV panels, photoelectric conversion efficiency, and the ambient temperature. The PV output $P_{pv}(t)$ at time t is as follows:

$$P_{\rm pv}(t) = N_{\rm pv} \cdot A \cdot G(t) \cdot \eta_{\rm pv} \tag{1}$$

Where N_{pv} , A, G(t) and η_{pv} denote the number of PV panels, PV area (m²), solar irradiation at time t, and photoelectric conversion efficiency. The value of η_{pv} is not only related to the maximum conversion efficiency of photovoltaic panels, but also depends on parameters such as power tracking system efficiency, operating temperature and solar irradiation, as shown in equations (2) and (3).

$$\eta_{\rm pv} = \eta_{\rm max} \cdot \eta_M \cdot \left(1 - \beta \cdot (T_c - T_{\rm ref})\right) \tag{2}$$

$$T_c = T_a + \left[\frac{T_{\text{normal}} - 20}{800}\right] \cdot G(t)$$
(3)

where η_{max} is the max conversion efficiency of PV; η_M , β and T_{ref} denote the max conversion efficiency of power tracking device, temperature coefficient, and reference temperature of PV, which are taken to be 1, 0.05, and 25°C in this paper. The temperature of PV panels T_c is related to environment temperature T_a , normal operating temperature T_{normal} (45°C) and solar irradiation G(t).

The PV panels are installed horizontally on the deck, so the ship irregular swing will affect the output of PV system. The influence caused by the position change in the vertical direction can be neglected, and the influence caused by the rolling of the ship is mainly considered [7]. The rolling of the ship will cause the equivalent light-receiving area of the photovoltaic panel to change, which is approximately equivalent to the change of the solar irradiation [8], and the solar irradiation is corrected according to equation (4):

$$G'(t) = \frac{G(t)(1+\cos\theta)}{2} + \frac{G(t)(1-\cos\theta)}{2} \cdot \cos(2\pi ft)$$
(4)

where G'(t), θ and f denote modified irradiation, maximum swing angle (±16°) and swing frequency (0.05 Hz). Since the sampling period of all data is 1 hour, the average value of the hourly irradiation is taken here. The data of single PV panel is shown in Table 1. The data of solar irradiation and ambient temperature along the navigation route in 2019 is shown in Fig 2. Meteorological data comes from NASA's Terra satellite[9].

Table 1. Data of a PV panel				
Parameter	Value	Parameter	Value	
Life time	30 years	Efficiency	18%	
Rated power	160 w	Length	1.16 m	
Cost	60 \$	Width	0.83 m	

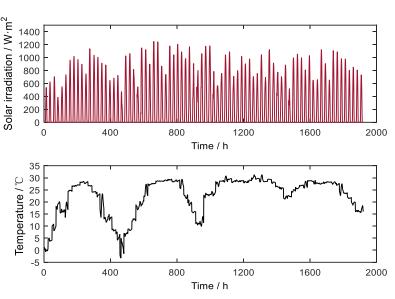
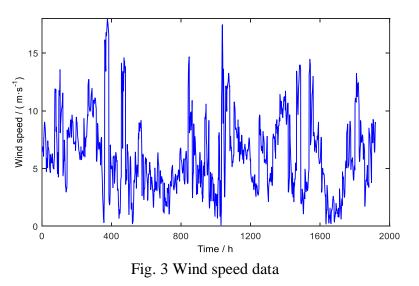



Fig. 2 Data of solar irradiation and temperature

2.2.2 Wind Turbine Generation

The power generated by the wind turbine $P_{wt}(t)$ at the time t can be obtained as follows:

$$P_{\rm wt}(t) = \begin{cases} 0 & 0 \le v_t \le v_{\rm ci} \\ N_{\rm wt} \cdot P_{\rm wt_r} \frac{v_t - v_{\rm ci}}{v_r - v_{\rm ci}} & v_{\rm ci} \le v_t \le v_r \\ N_{\rm wt} \cdot P_{\rm wt_r} & v_r \le v_t \le v_{\rm co} \\ 0 & v_t \ge v_{\rm co} \end{cases}$$
(5)
$$0 \le P_{\rm wt}(t) \le N_{\rm wt} \cdot P_{\rm wt r}$$
(6)

where N_{wt} , P_{wt_r} and v_t denote the number of wind turbine, rated power of single wind turbine and wind speed. The parameter v_{ci} , v_r and v_{co} denote cut-in speed, rated speed and cut-out speed. The data of single wind turbine is shown in Table 2. Data of wind speed along the navigation route is shown in Fig 3.

Table 2. Data of wind turbine generator

		e	
Parameter	Value	Parameter	Value
Life time	30 years	Rated speed	8 m/s
Rated power	30 kW	Cut-in speed	3 m/s
Cost	1000 \$/kW	Cut-out speed	15 m/s

2.2.3 Energy Storage System

The energy storage system can suppress grid fluctuations caused by the intermittency and sudden changes of wind and solar power in the ship power grid. When the power that is generated by PV, wind turbine and diesel generators exceeds the power load, ESS is charged:

$$E(t) = \begin{cases} E(t-1) + P_{\text{ess}}(t) \cdot \eta_c \cdot \Delta t & t > 1\\ E(0) + P_{\text{ess}}(t) \cdot \eta_c \cdot \Delta t & t = 1 \end{cases}$$
(7)

where E(t), $P_{ess}(t)$ and η_c denote the energy stored in ESS, output of ESS and charging efficiency. The time period Δt is taken as 1 hour in this paper. E(0) is the initial energy in ESS.

If the power generated by PV, wind turbine and diesel generators can't meet the load, ESS is discharged:

$$E(t) = \begin{cases} E(t-1) + P_{ess}(t)/\eta_d \cdot \Delta t & t > 1\\ E(0) + P_{ess}(t)/\eta_d \cdot \Delta t & t = 1 \end{cases}$$
(8)

where η_d is discharging efficiency.

The service life of LiFePO₄ batteries is related to factors such as depth of discharge (DOD), temperature, charge and discharge power, etc. Under the conditions of 20°C operating environment, 0.8 DOD and 1C charge and discharge, the battery has a cycle life of about 5000 times [10]. Then the life time of the ESS y_{ess} (year) can be obtained by equation (9):

$$y_{\rm ess} = \frac{\sum (P_{\rm dis}(t)/\eta_d) \cdot \Delta t}{5000 \cdot S}$$
(9)

where $P_{\text{dis}}(t)$ and S denote the discharging power of ESS (kW) and the capacity of ESS (kW·h). The data of single LiFePO₄ battery is shown in Table 3.

		•	
Parameter	Value	Parameter	Value
Capacity	1 kW∙h	Max charge power	1 C
Max SOC	0.1	Max discharge power	1 C
Min SOC	0.9	Charge efficiency	85%
Cost	200 \$	Discharge efficiency	100%

Table 3. Data of battery

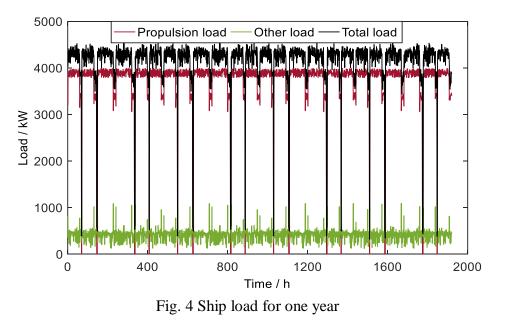
2.2.4 Diesel Generator

Different from power system on land, ship diesel generator must meet the total power load, regardless of the use of renewable energy. The ship diesel generator installed total capacity of 4.6 MW, sufficient to ensure 100% reliability. The relationship between the fuel consumption (*FC*) per hour and the output power of diesel generators P_d can be obtained as follows:

$$FC(P_d) = a_0 + a_1 \cdot P_d + a_2 \cdot P_d^2 + a_3 \cdot P_d^3$$
(10)

$$SFC(P_d) = F_C(P_d)/P_d \tag{11}$$

where a_0 , a_1 , a_2 and a_3 are parameters to calculate CO₂ emission. The specific fuel consumption *(SFC)* is used to find the best operating conditions of diesel generator. In this paper, *SFC* is taken to be $336.8 - 66.5 \cdot P_d + 8.2 \cdot P_d^2$ (kg · MW⁻¹ · h^{-1}).


2.2.5 Load

The electric propulsion ship has four operating conditions which are regular cruising, docking, loading/unloading and anchoring. Diesel generators always provide most of the electric energy. When the ship is on the condition of loading/unloading and anchoring, dock power will be used to supply all of the ship load.

The load is mainly divided into propulsion load and other load. The energy from PV and wind turbine does not supply the constant propulsion load here. The maximum and minimum of load in four conditions is shown in Table 4. Total load is shown in Fig. 4.

Conditions	Max of propulsion/kW	Max of total/kW	Time proportion
Cruising	3900	4500	0.84
Docking	2700	3800	0.02
Loading/unloading	3600	4300	0.11
Anchoring	0	750	0.03

Table 4. Loads under four conditions

3. Problem Formulation

3.1 Objective function

The optimization problem of ship power system capacity takes annual operating cost f_1 and CO₂ emission f_2 as the optimization goals, and configures the capacity of each power supply part and the output power of diesel generators under the condition of satisfying system operation constraints.

$$\begin{cases} \min \quad f_1 = C_f + C_{\rm in} + C_{\rm re} + C_{\rm mt} \\ \min \quad f_2 = AEEOI = \sum_{j=1}^T \omega_j \cdot EEOI_j/T \end{cases}$$
(12)

More specifically,

$$\begin{cases} C_{\rm f} = \sum_{j=1}^{T} c_{\rm f} \cdot P_{j} \cdot SFC(P_{j}) \cdot \Delta t_{j} \\ C_{\rm in} = \sum_{i=1}^{3} N_{i} \cdot c_{i} \cdot \frac{r(1+r)^{y_{i}}}{(1+r)^{y_{i}} - 1} \\ C_{\rm re} = \sum_{i=1}^{3} N_{i} \cdot c_{i} \cdot ceiling(\frac{y_{\rm ship}}{y_{i}} - 1) \cdot \frac{r(1+r)^{y_{i}}}{(1+r)^{y_{i}} - 1} \\ C_{\rm mt} = \sum_{i=1}^{4} \sum_{j=1}^{T} c_{\rm mti} \cdot P_{ij} \cdot \Delta t_{j} \end{cases}$$
(13)

where C_f , C_{in} , C_{re} and C_{mt} denote fuel cost, install cost, replecement cost and maintenance cost, c_f , c_i and c_{mt_i} denote fuel price, ennergy system price and maintenance price, y_i is the life time of energy system. The function *ceiling* is used to rounding of a real number nearest integer.

$$\begin{cases} EEOI_{j} = \frac{mCO_{2,j}}{LF_{j} \cdot V_{j} \cdot \Delta t_{j}} \\ mCO_{2,j} = c \cdot P_{j} \cdot SFC(P_{j}) \\ \omega_{j} = \frac{V_{j} \cdot \Delta t_{j}}{dis_{max}} \end{cases}$$
(14)

The objective f_2 (average energy efficiency operation indicator, AEEOI) is modified from energy efficiency operation indicator (EEOI) [6]. The $EEOI_j$ in each time period along the route is calculated using (14) where $mCO_{2,j}$ is the CO₂ emission. The weighting factor ω_j of $EEOI_j$ can be obtained in (14) where LF, V and dis_{max} denote ship's load factor, ship speed and the longest passage which the ship sials during Δt .

3.2 Constrains

1) Output power limit of each power system.

$$P_{\min,i} \le P_i \le P_{\max,i} \quad \forall i \tag{15}$$

where $P_{min,i}$ and $P_{max,i}$ denote the minimum and maximum of i^{th} power system.

2) Balance between power generation and electric load.

$$P_d + P_{\rm pv} + P_{\rm wt} + P_{\rm ess} = P_{\rm load} \tag{16}$$

where P_{load} is the ship power load.

3) The limit of diesel generator.

$$|P_{d,j} - P_{d,j-1}| / \Delta t_j \le R_C \quad \forall j \tag{17}$$

where R_c denotes the maximum climbing rate of diesel generator.

4) Renewable power system and ESS installable size limit.

$$N_{\min,i} \le N_i \le N_{\max,i} \quad \forall i \tag{18}$$

where $N_{min,i}$ and $N_{max,i}$ denote the minimum and maximum amount of i^{th} power system.

3.3 Solution method

According to the optimization model established above, the capacity of each power system is solved with the annual operating cost and CO_2 emissions as the optimization goals. This paper uses multi-objective differential evolution algorithm based on decomposition and multi-strategy mutation (MODE-DMSM) to solve this problem.

4. Simulation Result and Discussion

Three cases are obtained by simulation. Case 1 shows the initial condition (diesel only), case 3, case 4 and case 5 are optimal results with different weight distributions of the sub-objective functions. Case 2 shows the optimal result without the use of ESS. The number or size of PV panels, wind turbine and ESS in all cases have reached the maximum installable size (1000 m² and 6 wind turbine generators, respectively), because the combine cost of the renewable energy system is lower than the cost of fuel generation.

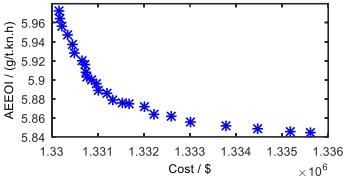


Fig. 5 Pareto frontier

			5		
	Case 1	Case 2	Case 3	Case 4	Case 5
PV (m ²)	0	1000	1000	1000	1000
Wind (kW)	0	180	180	180	180
ESS (kW·h)	0	0	778	832	813
Fuel cost (\$)	1359286	1306773	1279407	1287383	1286274
Total cost (\$)	1359286	1334054	1334006	1332213	1331195
AEEOI (g/tn.kn.h)	6.41	6.15	5.86	5.89	5.92

Table 5. Cases obtained by simulation

The cost and the emission of case 2 comparison of case 1 are both reduced, which proves that the application of new energy reduces the power generation of diesel generators and reduces greenhouse gas emissions. The randomness and intermittency of new energy will lead to fluctuations in the ship power grid, which can be eliminated by the ESS in case 3-5. Compared with case 2, case 3-5 have further improvement in two indicators.

5. Conclusion

Aiming at two goals of reducing ship operating cost and reducing ship greenhouse gas emissions, this paper establishes a multi-objective optimization model for the capacity of renewable energy system, and uses MODE-DMSM algorithm to solve the model. The simulation results prove the use of renewable energy and ESS can reduce ship operating costs and CO_2 emissions. The use of renewable energy and ESS can significantly reduce fuel consumption and emissions.

Future study will consider the influence of wind and ship speed on the output of wind turbines, the output control strategy of each power supply system.

References

- G. J. Tsekouras, F. D. Kanellos, and J. Prousalidis: Simplified method for the assessment of ship electric power systems operation cost reduction from energy storage and renewable energy sources integration, IET Electrical Systems in transportation, Vol. 5 (2014) No. 2, p. 61–69.
- [2] C. H. LUO, H. CHEN: Research on marine power management system (PMS), Navigation of China, Vol. 16 (2007) No. 4, p. 87-91.

- [3] Z. X. YANG, J. M. XIAO, X. H. WANG: Optimization strategy of ship energy management system based on differential evolution algorithm, Chinese Journal of Ship Research, Vol. 13 (2018) No. 4, p. 134-141.
- [4] A. Boveri, F. Silvestro, M. Molinas: Optimal sizing of energy storage systems for shipboard applications, IEEE Transactions on Energy Conversion, Vol. 34 (2019) No.2, p. 134-141.
- [5] X. G. YANG, P. SUN, C. YANG:Multi-objective optimization of capacity of hybrid energy storage device for ship electric propulsion system, Navigation of China, Vol. 41 (2018) No. 2, p. 9-14, 62.
- [6] C. Yao, M. Y. Chen: Novel adaptive multi-clustering algorithm-based on optimal ESS sizing in ship power system considering uncertainty, IEEE Transactions on Power Systems, Vol. 33 (2018) No. 1, p. 307-316.
- [7] H. Lan, S. L. Wen, Y. Y. Hong: Optimal sizing of hybrid PV/diesel/battery in ship power system, Applied Energy, 158 (2015), p. 26-34.
- [8] Z. Y. ZHANG, W. G. JIANG: Capacity optimal strategy for new energy ship hybrid power system, Ship Engineering, Vol. 42 (2020) No. 10, p. 84-89.
- [9] Information on https://www.nasa.gov/
- [10]F. GAO, K. YANG, D. HUI: Cycle-life energy analysis of LiFePO4 batteries for energy storage, Proceedings of the CSEE, Vol. 33 (2013) No 5, p. 41-45.