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Abstract 

The influence of the dynamic characteristics of the system on vibrating screen is the 
extremely important in oil drilling industry. However, synchronous behavior of the 
motors is the essential factor that determine the dynamic characteristics of vibrating 
screen. The parallel axis space vibration model of the motors in three-dimensional space 
is proposed in the paper. In order to study the synchronous mechanism, the dynamic 
equations of the system are obtained according to the Lagrange formula. At the same 
time, the synchronization condition of the system is calculated by the mean small 
parameter method. Then, the synchronization stability of the system is studied by using 
Poincare - Lyapurov method. Finally, the correctness of the theoretical calculation is 
verified by numerical calculation. It is found that the system parameter values must 
satisfy both the synchronization conditions and the synchronization stability conditions 
to realize the stable synchronous operation between rotors. The synchronous state is 
determined by damping ratio, frequency ratio and motor position parameters. When the 
system operates in stable state, the motion trajectory of the vibrating screen's center of 
mass is an ellipse in the three-dimensional coordinate system. 
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1. Introduction 

Synchronous phenomenon is ubiquitous in nature. In recent years, it has become one of the major 

scientific topics because of its important value and application prospect in engineering technologies 

such as nonlinear coupling system, complex network transmission system, coupling pendulum system 

and vibrating screen system [1-4]. The earliest synchronization phenomenon was discovered by 

Huygens in 1665 by observing the movement of two pendulums hanging on an elastic beam. The 

discovery and application of the theory stimulated the enthusiasm of scholars around the world in the 

study of synchronization theory and made many scientific research achievements. Blekhman (1988) 

discovered the synchronization of double excited motor in non-resonant system, and proposed the 

synchronization theory of double excited motor system by using Poincare Lyapunov method, which 

guides the application of synchronization theory in theoretical research and practical engineering [5]. 

In 2013, Czolczynski et al. considered the synchronization problem of the pendulum mounted on the 

horizontal beam, and derived the synchronization conditions of the system through analytical methods 

and numerical calculations [6]. In 2006, Hou Yongjun established a simulation model to consider the 

electromechanical coupling mechanism of three identical shaker systems, which is of great 

significance for discussing the synchronization problem of multi-motor driven vibration systems [7]. 

In 2009, Wen Bangchun et al. derived synchronization conditions and synchronization stability by 

using Hamilton theory and average method. The core idea of this method is to seek the equilibrium 
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torque equation between motor shafts under synchronous state [8]. In 2010, Zhao Chunyu et al. 

studied an improved small-parameter method to state the synchronization process of motor system, 

which greatly simplified the solution process of system synchronization problem [9.10]. Zhang 

Xueliang et al. discussed the transmission mechanism of synchronous torque between cylindrical 

rollers and multi-rotors in the vibration system and revealed that in the synchronous state, the larger 

the maximum synchronous torque, the larger the allowable residual torque between motors [11.12.13]. 

In 2013-2014, Nanha Djanan et al. studied the system in which three motors work on the same board, 

and the synchronous operation of the rotor depends on the physical characteristics of the motor and 

the board [14,15]. Fang Pan et al. considered the synchronization and stability of the elastically 

coupled rotor in the vibration system and found that the synchronization characteristics of the system 

were affected by the stiffness of the coupled spring [16.17.18]. In 2016, Kong Xiangxi et al. realized 

the zero-phase synchronization state between the three rotors by using the adaptive synovial 

membrane control algorithm [19]. The above research mainly studies the synchronization of 

mechanical system in two - dimensional plane. Paz Cole (1992) and Chunyu Zhao (2010) discussed 

the spatial synchronization problem of two vertically unbalanced rotors [20.21]. In 2016, Chen 

Xiaozhe et al. carried out theoretical and experimental description on the spatial synchronization 

problem of unbalance rotors with the same rotating axis [22]. These studies explain the common 

vibration synchronization problems in daily life and promote the development of screening 

technology. 

In this paper, a dynamic model of a space vibrating screen with non-parallel shafts motor for solid-

liquid separation in drilling operations is studied. Motors synchronization have a decisive effect on 

the dynamic characteristics of vibration screen. Therefore, the study of motor synchronous state is 

the key to design of vibrating screen. 

2. Dynamic model 

A stucture diagram of the vibrating screen is shown in Figure 1(a). This vibrating screen includes a 

rigid vibrating body of mass 𝑚4 , which is elastically linked via damping springs with stiffness 

coefficient 𝑘𝑖 and damping coefficient 𝑓𝑖(𝑖 = 𝑥, 𝑦, 𝑧, 𝜓, 𝛿, 𝜗). Unbalanced rotor 𝑗 is modeled by 

an eccentric structure 𝑚𝑗(𝑗 = 1,2,3). The distance is 𝑟; The phase of the unblance rotor to the motor 

spin axis is 𝜑𝑗(𝑗 = 1,2,3). 𝛽 is an intersection angle between 𝑂𝑗𝐺 and 𝐺𝑥 ′; 휃 is an intersection 

angle between 𝑧‴𝐺 and 𝑧 ′𝐺; 𝑙 is length between shaft center of the rotor to centroid G of the 

vibration body. The vibration system is oscillated in 𝑥−, 𝑦 −  and 𝑧 − directions, defined by 

displacements 𝑥, 𝑦  and 𝑧 . The body swung with respect to its centroid in 𝜓−, 𝛿 −  and 𝜗 − 

directions, defined by displacements 𝜓, 𝛿 and 𝜗.  

 

(a) dynamicmodel                              (b) reference coordinate 

Figure 1. Dynamic model of the vibration screen 
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The conversion of reference coordinate is shown in Figure 1(b), and spin order of the coordinate is 

abide by 𝐺𝑥‴𝑦‴𝑧‴ → 𝐺𝑥″𝑦″𝑧″ → 𝐺𝑥 ′𝑦 ′𝑧′ . The direction cosine matrix agreement with each 

coordinate spin can be denote by 

𝐴1 = [
1 0 0
0 − 𝑐𝑜𝑠 휃 𝑠𝑖𝑛 휃
0 𝑠𝑖𝑛 휃 − 𝑐𝑜𝑠 휃

] , 𝐴2 = [

1 0 0
0 𝑐𝑜𝑠 𝜓 − 𝑠𝑖𝑛 𝜓
0 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓

], 

𝐴3 = [
𝑐𝑜𝑠 𝛿 0 𝑠𝑖𝑛 𝛿

0 1 0
− 𝑠𝑖𝑛 𝛿 0 𝑐𝑜𝑠 𝛿

] , 𝐴4 = [
𝑐𝑜𝑠 𝜗 − 𝑠𝑖𝑛 𝜗 0
𝑠𝑖𝑛 𝜗 𝑐𝑜𝑠 𝜗 0

0 0 1
]            (1) 

In consideration of infinitesimal rotation of the vibrating system in 𝜓−, 𝛿 −and 𝜗 −directions, 

matrices 𝐴2, 𝐴3 and 𝐴4 are simplified as 

𝐴2 = [

1 0 0
0 1 −𝜓
0 𝜓 1

] , 𝐴3 = [
1 0 𝛿
0 1 0

−𝛿 0 1
] , 𝐴4 = [

1 −𝜗 0
𝜗 1 0
0 0 1

]          (2) 

In spining coordinate 𝐺𝑥‴𝑦‴𝑧‴, center of mass coordinate of unbalanced rotor 1,2 and rotor 3 is 

expressed by 

𝒙‴
1 = [

𝑙 𝑐𝑜𝑠 𝛽 − 𝑟 𝑐𝑜𝑠 𝜑1

0
𝑙 𝑠𝑖𝑛 𝛽 + 𝑟 𝑠𝑖𝑛 𝜑1

]，𝒙‴
2 = [

−𝑙 𝑐𝑜𝑠 𝛽 − 𝑟 𝑐𝑜𝑠 𝜑2

0
𝑙 𝑠𝑖𝑛 𝛽 + 𝑟 𝑠𝑖𝑛 𝜑2

]，𝒙‴
3 = [

0
𝑟 𝑠𝑖𝑛 𝜑3

𝑟 𝑐𝑜𝑠 𝜑3

] (3) 

Center of mass coordinate of the eccentric lump in coordinate 𝐺𝑥 ′𝑦 ′𝑧 ′ can be acquired by means of 

the comvertion of spin matrix 𝑹. Centroid of the oscillating screen in coordinate 𝑜𝑥𝑦𝑧 is 𝒙𝑮 =
[𝑥, 𝑦, 𝑧]𝑇, and so center of mass of the rotors in coordinate 𝑜𝑥𝑦𝑧 can be denoted by 

{

𝒙1 = 𝒙𝑮 + 𝐴1𝑹𝒙‴
1

𝒙2 = 𝒙𝑮 + 𝐴1𝑹𝒙‴
2

𝒙3 = 𝒙𝑮 + 𝐴1𝑹𝒙‴
3

                              (4) 

Where 𝑹 = 𝐴2𝐴3𝐴4. 

On the basis of kinetic theory, kinetic energy 𝑇, potential energy 𝑈 and dissipated energy of the 

vibration body should be written by 

( )2 2 2 2 2 2
4

3 3
2

1 1

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2
1 1 2 2 3 3

1 1 1 1
+y +z

2 2 2 2

1 1

2 2

1 1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2

1 1 1

2 2 2

T
i i i i i

i i

x y z

x y z

E m x J J J

J m

U k x k y k z k k k

D f x f y f z f f f

f f f

  

  

  

  



  

  

  

= =

= + + +

+ +

= + + + + +

= + + + + +

+ + +

  x x

             (5) 

 

The dynamic equation of the vibration body above can be figured up. In the system, bring in 𝑞𝑖 =
[𝑥, 𝑦, 𝑧, 𝜓, 𝛿, 𝜗, 𝜑1, 𝜑2, 𝜑3]𝑇  as generalized coordinate matrix, in addition, the generalized force 

matrix of the vibrating body is thought as 𝑄𝑖 = [0,0,0,0,0,0, 𝑀𝑒1 − 𝑅𝑒 1, 𝑀𝑒2 − 𝑅𝑒 2, 𝑀𝑒3 − 𝑅𝑒 3  ]𝑇. 

the dynamic equations of the vibrating screen are written by 
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( ) ( )

( ) ( )

( )

2 2

1 1 1 1 2 2 2 2

2 2

1 1 1 1 2 2 2 2

2 2

3 3 3 3 3 3 3 3

1 2

1 2

3

sin cos sin cos

sin cos sin cos

cos cos cos sin sin sin sin cos

sin sin

x x

y y

z z

Mx f x k x m r m r

My f y k y m r m r

m r

Mz f z k z

       

       

           

 

+ +

− −

− + +

+ + = − −

+ + = +

+

+ + ( ) ( )

( )

( )

( )

2 2

1 1 1 1 2 2 2 2

2 2

3 3 3 3 3 3 3 3

2

1 1 1 1

2

2 2 2 2

1 2

3

1

2

cos sin cos sin

sin cos sin sin cos sin cos cos

cos sin

cos sin

cos cos

sin 2 sin

sin 2 sin

r

m r m r

m

J f k m rl

m rl
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− −

− + − −

− +

− +

= +

+

+ + =

+

( ) ( )

( ) ( )
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2 2

1 1 1 1 1 1 1 1

2 2

2 2 2 2 2 2 2 2

2

1 1 1 1

2

2 2

1 1

2 2

1

2

sin cos cos sin

sin cos cos sin

cos sin

cos

sin cos

sin cos

sin 2 cos

sin 2 cos

rl

rl

f k m rl m rl

m rl m rl

J f k m
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− − −

− − − +

−

− +

+ + = +

+ +

+ + =

+ ( )

( )

( )

( )

2 2

1 1 1 1 1 e1 1 1

1 1

2 2 2 2 2 2 2 2

2 2

sin

sin sin

cos cos sin sin 2 cos cos sin 2 sin

sin sin

cos cos sin sin 2 cos cos

e

e e

J f M R m r x l

m r z y l l l

J f M R m r x l

m r z y l l l



    

          

    

       

+ = − − +

+ − + + −

+ = − − +

+ − − − −( )
( )

( )

3 3

3 3

3 3 3 3 3 3 3

3

sin 2 sin

cos cos sin sin

sin cos cos sin

e e r

r

J f M R m y

m z

  

   

   

  +

+

+ = − +

−

  (6) 

 

Where 𝑀 = 𝑚1 + 𝑚2 + 𝑚3 + 𝑚4. 𝐽𝜓, 𝐽𝛿  and 𝐽𝜗 on behalf of the moment of inertia of vibration 

screen about 𝜓 − , 𝛿 −and 𝜗 − axis respectively. Here, 𝐽𝜓 ≈ 𝐽𝛿 ≈ 𝐽𝜗 ≈ 𝑀𝑙𝑒
2 , in which 𝑙𝑒  are 

assigned as the equivalent eccentricity radius of the oscillating screen  around x-, y-, and z-directions. 

𝐽𝑗 is the rotational inertia of eccentric lump 𝑗, which is the sums of the rotary inertia of motor axis 

and eccentric lump. Compared with 𝑚𝑗𝑟2, the rotary inertia of motor axis is so tiny that can be ignore, 

i.e., 𝐽𝑗 ≈ 𝑚𝑗𝑟2(𝑗 = 1,2,3). jM and 𝑅𝑗  are electromagnetic and frictional torque of the motor 𝑗. 

The dot over variables represents differentiation with respect to time t. 

3. Synchronism of Rotors 

The average phase angle of the unbalance rotors is regarded as 𝜑, and the phase difference between 

the two eccentric rotors is assigned by 𝛼, i.e. 

𝜑 =
1

3
(𝜑1 + 𝜑2 + 𝜑3), 𝜑1 − 𝜑2 = 2𝛼1, 𝜑2 − 𝜑3 = 2𝛼2             (7) 

𝜑1 = 𝜑 +
4

3
𝛼1 +

2

3
𝛼2; 𝜑2 = 𝜑 −

2

3
𝛼1 +

2

3
𝛼2; 𝜑3 = 𝜑 −

2

3
𝛼1 −

4

3
𝛼2       (8) 

This vibrating screen is oscillated in a period. Hence, the variation of mean angle speed of the 

unbalance rotors is varied periodically. In light of the single mean period of the vibration body to be 

𝑇, therefore the mean value of phase angle 𝜑 over the single period 𝑇 must be a constant, i.e. 

𝜔𝑚0 =
1

2
∫ �̇�

𝑇

0
𝑑𝑡 = constant                         (9) 
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Considering the mean method and small parameter method, the coefficients of momentary fluctuation 

of �̇� and   about 𝜔𝑚0 are assumed to be 𝜉0, 𝜉1 and 𝜉2, which are functions of time t, i.e. 

 

�̇� = (1 + 𝜉0)𝜔𝑚0, �̇�1 = 𝜉1𝜔𝑚0, �̇�2 = 𝜉2𝜔𝑚0                (10) 

 

In light of equations (7) to (10), difffferentiate equation (10) with respect to t. The phase angle, 

angular velocity, and angular acceleration of the unbalance rotors can be writed by 

 

�̇�1 = (1 + 𝜉0 +
4

3
𝜉1 +

2

3
𝜉2) 𝜔𝑚0 = (1 + 휀1)𝜔𝑚0 

�̇�2 = (1 + 𝜉0 −
2

3
𝜉1 +

2

3
𝜉2) 𝜔𝑚0 = (1 + 휀2)𝜔𝑚0 

�̇�3 = (1 + 𝜉0 −
2

3
𝜉1 −

4

3
𝜉2) 𝜔𝑚0 = (1 + 휀3)𝜔𝑚0             (11) 

 

When the mean values of small parameters 
1 ,

2 and 
3  in single mean period T  are equal to 

zero, i.e., so as to acquire the approximate solutions of displacement of the vibration screen, lead in 

the following parameters 

 

1 1 2 2 3 3/ , / , / , / , / ,

/ , / / , / ,

/ 2 , / 2 , / 2

/ 2 , / 2 , / 2 /

x x y y

z z

x x x y y y z z z

l e

m M m M m M k M k M

k M k J k J k J

f M k f M k f M k

f J k f J k f J k r l l

        

           

    

   

  

  

= = = = =

= = = =

= = =

= = = =

，

，

，

         (12) 

 

Substituting equation (12) into equation (6), the first six formulas in equation (10) can be expressed 

as  

( )

2 2

1 1 1 2 2 2

2 2

1 1 1 2 2 2

2 2

3 3 3 3 3

2 2

1 1 1 2 2 2

cos cos

sin sin sin sin

                          cos sin sin cos

cos sin cos sin

      

x x

y y

z z

Mx f x k x m r m r

My f y k y m r m r

m r

Mz f z k z m r m r

   

     

     

     

+ + = − −

+ + = +

+ − +

+ + = − −

( )2 2

3 3 3 3 3

2 2

1 1 1 2 2 2

2 2

1 1 1 1 1 1

2

                      sin sin cos cos

sin 2 sin sin sin 2 sin sin

sin cos cos sin

                              

m r

J f k m rl m rl

J f k m rl m rl

m rl

  

  

     

          

        

+ −

+ + = +

+ + = − −

− 2 2

2 2 2 2 2

2 2

1 1 1 2 2 2

sin cos cos sin

sin 2 cos sin sin 2 cos sin

m rl

J f k m rl m rl  

     

          

+

+ + = − +

        (13) 

 

The natural frequency of the vibration screen is thought as four to five times than frequency of exterior 

excitations in a far-resonant system, and damping ratio 휁𝑖(𝑖 = 𝑥, 𝑦, 𝑧, 𝜓, 𝛿, 𝜗)  of the springs is 

extremely small. The displacements of the vibration body can be denoted as  
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 2 2

1 1 2 2

3 3 3

1 1 2 2

3 3 3

cos cos

sin sin sin

     cos sin sin cos

cos sin sin

     sin sin cos cos

sin 2

x x x

y y y

y y y

z z z

z z z

l

x r

y r

r

z r

r

rr


      

       

        

       

        


 

= − − − − −  

 = − − + −
 

 − − − + −
 

= − − − − −  

− + − − −  

= − ( ) ( )

( ) ( )

( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

sin
sin sin

sin sin

sin 2 cos
sin sin

e

l

e

l

e

l

rr

l

rr

l

 

  

  


     

         

 
       

 − + − 

= − − − + + − −  

= − − − + −  

               (14) 

Where 𝜇𝑖 = 1/√(1 − 𝑛𝑏
2)2 + (2𝜉𝑖𝑛𝑖)2,  𝛾𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛

2𝜉𝑖𝜔𝑖/𝜔𝑚0

1−(𝜔𝑖/𝜔𝑚0)2. 

4. Sychronous Condition 

In light of equation (14), the second-order derivative of displacements in 𝑥 −,𝑦−, 𝑧−, 𝜓−, 𝛿 − and 

𝜗 − directions with respect to 𝑡 can be figured up. Leading up them into the last three formulas of 

equation (6), and integrating them over a period 𝑇. The equilibrium dynamics equation of the three 

motors is as follows: 

2

1 1 0 1 1 0 1 1

2

2 2 0 2 2 0 2 2

2

3 3 0 3 3 0 3 3

1

2

1

2

1

2

m e e m L

m e e m L

m e e m L

J M R Mr M P

J M R Mr M P

J M R Mr M P

  

  

  

= − − =

= − − =

= − − =

                   (15) 

The output electromagnetic torque of the motor can be denoted as: 

𝑀𝑒𝑗 = 𝑀𝑒𝑜𝑗 − �̄�𝑒𝑜𝑗휀�̄�, 𝑗 = 1,2,3                        (16) 

Where 𝑇𝑒0𝑗  and �̄�𝑒𝑜𝑗  represent the electromagnetic torque and angular velocity stiffness 

coefficients of the motor in the synchronous stable state. Substitute Equations (16) into Equation (15), 

and write the result in matrix form, i.e. 

𝑬휀̇̄ = 𝑮휀̄ + 𝑼                               (17) 

where 

�̄̇� = [휀̇̄1 휀̇̄1 휀̇̄1]𝑇 , �̄� = [휀1̄ 휀1̄ 휀1̄]𝑇 , 𝑼 = [𝑢1 𝑢2 𝑢3]𝑇            (18) 

𝐄 = [

𝐽1𝜔𝑚0 + 𝜒′
11

𝜒′
12

𝜒′
13

𝜒′
21

𝐽2𝜔𝑚0 + 𝜒′
22

𝜒′
23

𝜒′
31

𝜒32 𝐽3𝜔𝑚0 + 𝜒′
33

]; 

𝐆 = − [

𝑘𝑒01 + 𝜒11 𝜒12 𝜒13

𝜒21 𝑘𝑒02 + 𝜒22 𝜒23

𝜒31 𝜒32 𝑘𝑒03 + 𝜒33

] , 𝐔 = [
𝑀𝑒01 − 𝑅𝑒01 − 𝑎1

𝑀𝑒01 − 𝑅𝑒01 − 𝑎1

𝑀𝑒01 − 𝑅𝑒01 − 𝑎1

]       (19) 

In the above equation, 𝑬 represents the inertial coupling matrix between rotors; 𝑮 and 𝑼 represent 

the stiffness coupling matrix and load torque matrix. When the system are synchronous, the small 

parameter vectors ε  and ε  must be zero. The equilibrium torque equation of the three motors can 

be obtained as follow. 
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  (21) 

where 𝑀0𝑗  represents the output torque in motor 𝑗 , which is the difference between the 

electromagnetic torque of the motors and fractional toques in their axis. 𝑀𝑘 = 𝑀𝑟2𝜔𝑚0
2 /2 

represents the kinetic of the system. Since the sine value of the phase lag angle is much smaller than 

the cosine value, the coefficients 𝑊𝑠1 and 𝑊𝑠3  can be ignored. Considering equation (20), we have 
𝛥𝑀012

𝑀𝑘
− 휂2

2𝑊𝑠01 − 휂2
2𝑊𝑠01 = 𝜏12(2�̄�1, 2�̄�2);

𝛥𝑀023

𝑀𝑘
− 휂2

2𝑊𝑠01 + 휂3
2𝑊𝑠03 = 𝜏23(2�̄�1, 2�̄�2)  

(21) 

where 
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= +  

+ − + + + + +  

− − + + +  

= − + + +  

+ − +  

− ( ) ( )2 3 3 1 2 32 sin 2 2c s sW    + + + + +  

        (23) 

In Equation (21), the left side of the equal represents the difference of the residual torques of the two 

motors, and the right side of the equal represents the dimensionless coupling torques between the two 

motors. 𝜏𝑐12(2�̄�1, 2�̄�2) is abounded function with respect to 𝛼1 and 𝛼2.i.e., 

|
𝛥𝑀012

𝑀𝑘
− 휂2

2𝑊𝑠01 − 휂2
2𝑊𝑠01| = |𝜏12(2�̄�1, 2�̄�2)| |

𝛥𝑀023

𝑀𝑘
− 휂2

2𝑊𝑠01 + 휂3
2𝑊𝑠03| = |𝜏23(2�̄�1, 2�̄�2)|  (23) 

|𝜏12(2�̄�1, 2�̄�2)| ≤ 𝜏12𝑚𝑎𝑥  
(2�̄�1, 2�̄�2); |𝜏23(2�̄�1, 2�̄�2)| ≤ 𝜏23 𝑚𝑎𝑥  (2�̄�1, 2�̄�2)      (24) 

Thus, to guarantee that the exciters are synchronously rotated, the synchronous condition of the 

vibration body can be described that maximum value of the non-dimensional coupling torque between 

the two motors should be bigger than or identical with difference of the dimensionless surplus torque. 

Finally, assumption the balanced torque to be 𝑃𝑗 . On the basis of Poincare-Lyapunov method, 

equilibrium torque equation of the motor is applied to search the synchronous stability condition of 

the vibrating system. i.e., 

|

∂(𝑃1−𝑃2)

∂2𝛼1
− 𝜒

∂(𝑃1−𝑃2)

∂2𝛼2

∂(𝑃2−𝑃3)

∂2𝛼1

∂(𝑃2−𝑃3)

∂2𝛼2
− 𝜒

| = 0                      (25) 

In light of Poincare-Lyapunov method, to insure that the system exists stable approximation solutions, 

the real part of each solution 𝜒 in Eq. (25) should be minus. Therefore, through Eq. (25), two roots 

𝜒1 and 𝜒2 relevant to steady phase differences can be calculated as follows: 

𝜒1 =
𝑎+𝑑+√(𝑎+𝑑)2−4(𝑎𝑑−𝑏𝑐)

2
＜0, 𝜒2 =

𝑎+𝑑−√(𝑎+𝑑)2−4(𝑎𝑑−𝑏𝑐)

2
＜0      (26) 
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5. Numerical Anlysis 

The essence of autosynchronization of the three motor excitation in spacial has been  discribed by 

the above-mentioned theory in detail. In order to further comprehension the theory of synchronization 

stability among the tri-exciters, it is essential to perform some arithmetic computations. Hence, the 

basic parameters of the system are considered as follows: 𝑘𝜓 = 13560(N/m), 𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 =

89586(N/m)  𝑓𝑥 = 𝑓𝑦 = 𝑓𝑧 = 207(𝑁 ⋅ s/m), 𝑓𝜓 = 150(𝑁 ⋅ s/rad), 𝑚4 = 100(kg), 𝑟 = 0.1(𝑚), 

𝐽𝑚 = 10(kgm2),  𝜔𝑚0 = 157(rad/s).  

 

.                   

(a)                                       (b) 

                

(c)                                     (d) 

Figure 2. The value of the dimentionless coupling torque: (a) 휂1 = 휂2 = 휂3 = 0.04, (b) 휂1 = 휂2 =
0.03, 휂3 = 0.04, (c) 휂1 = 0.02, 휂2 = 0.03, 휂3 = 0.04, (d) 휂1 = 0.01,  휂2 = 0.03, 휂3 = 0.04 

 

The variating trend of the maximum value of the dimensionless coupling torque with 𝑟𝑙 is discussed 

as shown in Figure 2. The mass ratio is equal in (a), and the mass ratio is not equal in (b) ~ (d). The 

dimensionless coupling torque increases when 𝑟𝑙  increases. When 𝑟𝑙  is constant, 𝜏12 𝑚𝑎𝑥  also 

increases with the increase of 𝛽, and the larger 𝛽 is, the faster the value of b increases. When the 

mass ratio is both 0.04, the value of a is the largest. Under this condition, the difference of remanent 

torque between the two motors allowed for synchronous operation of the vibration screen is the largest. 

6. Computer Simulation 

Some computer simulation can be obtained according to the dynamics equation (6). The values of the 

parameters in the simulation are as follows: rated power 0.07 Kw, rated voltage 220 v, frequency 50 

Hz, the rotating speed of 157 rad/s, stator resistance 0.56 Ω and rotor resistance 0.54 Ω, stator 

inductance 0.1 H, rotor inductance 0.12 H, the mutual inductance 0.13H, the damping coefficient of 

motor shaft 0.01 N/m, 𝑘𝑥 ≈ 𝑘𝑦 ≈ 𝑘𝑧 = 98596, 𝑘𝜓 ≈ 𝑘𝛿 ≈ 𝑘𝜗 = 19719, 𝑙 = 0.5,  𝑓𝑥 ≈ 𝑓𝑦 ≈ 𝑓𝑧 =

207, 𝑟 = 0.05, 𝑓𝜓 ≈ 𝑓𝛿 ≈ 𝑓𝜗 = 150, 휃 = 𝜋/4, 𝛽 = 𝜋/6. The electromechanical coupling model 

was built in Simulink, and the system dynamics characteristics were obtained as follows. 
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When 휂1 = 휂2 = 휂3 = 0.04, the dynamic characteristics of the screen are shown in Figure 3. The 

rotational speed of the three motors fluctuates around 157rad/s in Figure 3(a). The phase difference 

between 1 and 2 motor is stable at -1.5rad, which is in perfect keeping with the theoretical calculation. 

The motion track of the vibrating body center is an ellipse in space, and the projection on the 𝑧𝑜𝑦 

plane is a straight line. The motion trajectory of the vibration body is an ellipse in the spatial 

coordinate. The displacement of the centroid in the 𝑥−, 𝑦 −and 𝑧 −directions is shown in Figure 

3(d)~(f). The vibration displacement of the screen in the 𝑦−, 𝑧 −direction is slightly less than the 

displacement in the 𝑧 −direction. 

        

(a) Rotor velocity                     (b) phase difference 

       

(c) trajectory of the system              (d) displacement in x direction 

         

(e) displacement in y direction         (f) displacement in z direction 

Figure 3. Dynamic characteristics for 휂1 = 휂2 = 휂3 = 0.04, 𝑟𝑙 = 1. 

7. Conclusion 

In order to reduce the possibility of screen blocking, this paper presents a kind of non-parallel axis 

three-motor self-synchronous vibrating screen. The self-synchronization of the vibration screen is 

described in detail by using small parameter method and Poincare-Lyapunov theory. The results show 

that the maximum dimensionless coupling torque should be bigger than or equal to the difference of 

the dimensionless residual torque in order to insure the synchronous motion of the driver. In addition, 

based on the equation, the criterion of synchronization stability between rotors is derived, and when 

the two roots related to the phase difference are less than zero, the system has a stable approximate 
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solution. When the parameters of the system meet both the synchronous condition and the 

synchronous stability condition, the auto-synchronization of the system can be realized. In this paper, 

the mechanism of synchronous stabilization is further discussed by numerical calculation and 

simulation. The results of the study found that the dimensionless coupling torque between motors 

increases with the increase of 𝑟𝑙 , and the greater the 𝛽  value is, the greater the dimensionless 

coupling torque is. When 𝑟𝑙 is smaller, the system is easier to achieve synchronization. The phase 

difference in the stable phase is obviously affected by the motor installation position. 
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