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Abstract 

The solution of sparse linear equations is the core of many scientific computing tasks 
and engineering problems. With the increase of the complexity of practical problems, the 
optimization of solving sparse linear equations becomes more and more important. In 
this paper, based on the iterative method, the solutions of sparse matrix equations are 
analyzed, and three iterative methods are studied: Jacobi iterative method, Gauss-Seidel 
iterative method, and SOR iterative method. The sparse matrix solution performance of 
triplet storage is investigated, and the influence of relaxation factor 𝝎 on the number 
of SOR iterations is discussed. Finally, we compare and analyze the performance 
difference between the classical direct method and the iterative method, and give the 
applicable matrix of each method and the shortcomings. 
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1. Introduction 

1.1 Sparse matrix background 

A sparse matrix refers to a matrix in which there are many elements with a value of 0 and the 

distribution of non-0 elements is irregular. 

The sparse matrix is generally stored by compression, which has the advantage that each element can 

be accessed randomly, so it is easy to solve various operations of the matrix. For a sparse matrix, it 

usually has large dimensions, sometimes so large that zero elements take up most of the memory. 

Therefore, the storage method suitable for dense matrix will waste a large number of memory cells 

to store zero elements. A lot of time is also wasted on invalid operations of zero elements. 

There are two kinds of common storage methods, namely, sequential storage structure and chain 

storage structure. 

There are two common ways of sequential storage structure: triplet representation and pseudo address 

representation. Triplet notation, which defines a data structure that holds the x-coordinate, column 
coordinate, and value of the element. The pseudo-address representation is more space-saving than 

the triplet representation. It only defines a structure in which a member variable is used to store the 

value of the element and another member variable is used to store its pseudo-address. There are also 

two common methods of list storage structure, which are adjacency list and orthogonal list 

respectively. 

1.2 Data background 

The matrix selected in this paper comes from the optimal control problem of Vehicle Dynamics and 

Optimization Laboratory. 

Each optimal control problem produces a series of matrices of different sizes. The researchers have 
created a graph coarsening strategy that matches node pairs and given the mapping of this matrix. 
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This matrix consists of a set of nodes, where 𝑚𝑎𝑝(𝑖) = 𝑘represents the mapping of node 𝑖 in the 

original graph to node 𝑘 in the smaller graph. 𝑀𝑎𝑝(𝑖) = 𝑀𝑎𝑝(𝑗) = 𝑘 indicates that nodes 𝑖 and 𝑗 

are mapped to the same node 𝑘, and finally, nodes 𝑖 and 𝑗 are merged. 

The goal of the station attitude control problem is to determine the state and control to minimize the 

size of the final momentum. When the station finally reaches a direction, it can remain stable without 

the use of additional control torque. The system state is defined by the angular velocity of the 

spacecraft relative to the inertial frame of reference, Euler-Rodriguez parameters are used to define 

the attitude of the vehicle, and the angular momentum of the control torque gyroscope and control 

system is defined as torque. After 13 mesh iterations, the specified precision tolerance is satisfied. As 

the mesh was refined, the size of the matrix was increased from 99 to 1640. 

2. Problem analysis 

2.1  Jacobi iteration method 

2.1.1 Sub-section Headings 

Suppose the coefficient matrix 𝐴 of the linear equations 𝐴𝑥 = 𝑏 is invertible, and the principal 

diagonal elements 𝑎11, 𝑎22, … , 𝑎𝑚𝑚  is not 0. The 𝐷 = 𝑑𝑖𝑎𝑔(𝑎11, 𝑎22, … , 𝑎𝑚𝑚), and decompose 𝐴 

into 𝐴 = (𝐴 − 𝐷) + 𝐷, so 

𝐷𝑥 = (𝐷 − 𝐴)𝑥 + 𝑏 

Let 𝑥 = 𝐵1𝑥 + 𝑓1,where 

𝐵1 = 𝐼 − 𝐷−1𝐴 ,   𝑓1 = 𝐷−1𝑏 

 Iteration method with 𝐵1 as iteration matrix 

𝑥(𝑘+1) = 𝐵1𝑥(𝑘) + 𝑓1 

It's called Jacobi iteration, and it's expressed in terms of the components of a vector 

𝑥𝑖
(𝑘+1)

=
1

𝑎𝑖𝑖

[𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑛

𝑗=1
𝑗≠𝑖

] (𝑖 = 1,2 … , 𝑛; 𝑘 = 0,1,2, … ) 

Among them, the 𝑥(0) = (𝑥1
(0)

, 𝑥2
(0)

, … , 𝑥𝑛
(0)

)𝑇 as the initial vector. 

It can be seen that the Jacobi iteration method is simple, and only one iteration and vector 

multiplication need to be calculated for each iteration. When the computer computes the formula, it 

needs two sets of memory cells to hold 𝑥(𝑘) and 𝑥(𝑘+1). 

2.2 Gauss-Seidel iteration method 

On the basis of Jacobi iterative method, Gauss-Seidel iterative method uses the𝑖 − 1 components to 

calculate the 𝑖-th approximate solution in the 𝑘 + 1 step. The vector expression is: 

𝑥𝑖
(𝑘+1)

=
1

𝑎𝑖𝑖

[𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘+1)

𝑖−1

𝑗=1

− ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑛

𝑗=𝑖+1

](𝑖 = 1,2 … , 𝑛; 𝑘 = 0,1,2, … ) 

It can be seen that Gauss-Seidel method needs to calculate the components of the solutions in order 

from 1 to 𝑛. One obvious advantage, however, is that when the computation is run, only one set of 

storage units is required, and no additional variables are required to hold the iterative solution of the 
previous step. In terms of the amount of calculation, it is almost the same as jacobian iterative method, 

and each step of calculation is equivalent to a matrix and vector multiplication. 

2.3 Gauss-Seidel iteration method 

Working on the basis of Gauss-Seider method, 𝑆𝑂𝑅 calculates the weighted average of𝑥1
(𝑘+1)

 and 

the preceding iteration solution 𝑥1
(𝑘)

 to produce the next iteration solution. The vector representation 

is of the form 
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𝑥𝑖
(𝑘+1)

= (1 − 𝜔)𝑥𝑖 +
𝜔

𝑎𝑖𝑖

[𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘+1)

𝑖−1

𝑗=1

− ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑛

𝑗=𝑖+1

] 

Where, 𝜔 is the relaxation factor. When 𝜔 < 1, it corresponds to the low-slack iteration method; 

when 𝜔 > 1, it corresponds to the over-slack iteration method; when 𝜔 = 1, SOR iteration method 

is equivalent to Gauss-Seidel iteration method. 

SOR method only adds the calculation of relaxation factor 𝜔, and its premise is the same as the 
previous two methods, that the diagonal element of matrix A cannot be 0, and SOR method also needs 

to calculate the components of the solution in the order from 1 to 𝑛. 

3. Problem-solving 

3.1 Section Headings 

Because the iterative method requires that the diagonal element of matrix A cannot be 0, but in reality, 

many matrices have the diagonal element of 0, so the matrix needs to be preprocessed. 

First, the method of selecting all pivot elements is adopted. Think of a matrix as an iterated partitioned 

matrix. When the value on the main diagonal is 0, look for the largest element 𝑎𝑚𝑛 in the partitioned 

matrix. Take the transformation of the column and row of 𝐴, and put 𝑎𝑚𝑛 in the position of the 
diagonal element. At the same time, the corresponding row and column transformation of the right 

vector 𝑏 and the solution vector 𝑥 is carried out to achieve the preliminary processing of matrix 𝐴. 

After selecting the principal element method, the matrix 𝐴 is filled in for the case that the diagonal 

element still has 0. The specific method is as follows: if the diagonal element 𝑎𝑖𝑖  of the matrix is 0, 

the largest element in this column is found on the 𝑖th column, denoted as 𝑎𝑘𝑖. Add the coefficient 

corresponding in row 𝑘 to row 𝑖, and change the right-hand value of𝑏𝑖  to 𝑏𝑖 + 𝑏𝑘. A matrix with 

non-zero diagonal elements can be obtained by processing all rows with pivot elements of 0. 

A 99×99 sparse matrix is taken as an example to preprocess the matrix. The matrix before and after 

processing is visualized as shown in the figure below. 

 

Figure 1. Comparison of matrix non-zero element distribution before and after pretreatment 

  

As can be seen from Figure 1, the sparsity of the pre-processed matrix itself has been destroyed due 

to the filling of elements. Further analysis, two limitations of the pretreatment method are proposed 

as follows. 

On the one hand, the matrix filling operation makes a large number of 0 elements except the main 

diagonal be filled with numbers, which destroys the sparsity of the matrix. On the other hand, the 

addition of the row elements of the matrix makes some large values exist in the matrix, which further 

leads to the operation of the iterative method, the coefficient of the iterative matrix may be large. 
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Therefore, the real solution 𝑥∗is between 𝑥𝑘 and𝑥𝑘+1 in the process of iteration from 𝑥𝑘 to 𝑥𝑘+1. 

In this case, although the spectral radius 𝜌(𝐵) of the sparse matrix is less than 0, the iterative method 

still fails to converge. 

The visualization of the coefficient matrix corresponding to 𝑠𝑡𝑒𝑎𝑚3 data after pre-processing is 

shown in the figure below. 

 

Figure 2. Matrix distribution diagram of steam3 after preprocessing 

 

Figure 2 shows that the sparsity of 𝑠𝑡𝑒𝑎𝑚3 data still remains good after pretreatment. In the 

following iterative method, 𝑠𝑡𝑒𝑎𝑚3data will be taken as an example for further analysis. 

3.2 Solving process 

In SOR iteration method, the selection of relaxation factor 𝜔 has great influence on the convergence 

property of matrix. Firstly, the value of 𝜔 is changed to explore the influence of the selection of 

relaxation factor 𝜔 on the number of iterations. 

For 𝜔, values are taken at 0.1 intervals from 0.3 to 1.1. The influence of relaxation factor selection 

on the number of iterations is shown in the figure below 

 

Figure 3. The influence of relaxation factor on the number of iterations 
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It can be seen from Figure3 that the number of iterations decreases first and then increases with the 

increase of relaxation factor 𝜔. When 𝜔 approaches 1, the number of iterations is less and the 

convergence rate is faster. When the relaxation factor 𝜔 is 0.9, the number of iterations reaches a 

minimum of 17 times. The relationship between the absolute value of the eigenvalue and the 

relaxation factor is further explored. 

In general, the necessary condition of SOR iteration method convergence is 0 < 𝜔 < 2. In order to 

consider the spectral radius near the boundary, we extend the value of 𝜔 from (0,2) to (-1,3) in the 

experiment. Take the value of 𝜔 every 0.001, and the relationship between spectral radius and 

relaxation factor can be obtained as shown in the figure below. 

 

Figure 4. the relation between spectral radius and relaxation factor 

 

It can be seen from Figure4 that when 𝜔 is on the interval of (0,1.155), the spectral radius 𝜌(𝐵) <
1 and the iteration converges. When the spectral radius is minimized, the number of iterations 
reaches the minimum value. That is, when the spectral radius reaches the minimum, the corresponding 

relaxation factor is the optimal relaxation factor of the matrix under SOR iteration method. 

𝑆𝑡𝑒𝑎𝑚3data were substituted into Jacobi iteration method, Gauss-Seidel iteration method and SOR 
iteration method respectively. The running time, iteration times and residuals of the three running 

methods are compared as shown in the following table. 

 

Table 1. Comparison of iteration times and running time of the three iterative methods 

Methods Iteration times Running time 

Jacobi iteration method 61 0.0017339 

Gauss-Seidel iteration method 25 0.0018858 

SOR(𝜔 = 0.9) 17 0.0014259 

SOR(𝜔 = 1.1) 115 0.0046871 
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Figure 5. Comparison of iterative residuals and convergence rates 

 

By comparing the running time, the number of iterations and the rate of residual convergence, we can 

find that the selection of 𝜔 has a great influence on the convergence property of the matrix. If 𝜔 is 

the best relaxation factor, SOR iteration method is better than Gauss-Seidel iteration method and 

Jacobi iteration method. However, if the selection of 𝜔 is not appropriate, it will have the opposite 

effect on the convergence property of equation solution. 

4. Conclusion 

4.1 Comprehensive comparison 

Now we compare the solving effects of all direct methods and iterative methods. The measurement 

standards we adopted were respectively the solving time of the calling function of MATLAB and the 

relative residuals of the final solution. The data used in the test is steam3. mat. The performance data 

of the above three direct methods and three iterative methods are listed as follows: 

Table 2. Comprehensive comparative analysis of all solutions 

Methods 
Running time

（s） 
Relative residual 

Direct method 

No selected 1.5725922 8.49890463288078e-13 

columns 

selected 
2.4834406 3.03150101878268e-14 

all selected 0.1420398 4.39585483637832e-14 

Classical iterative method 

Jacobi 0.0072 1.53840832259825e-10 

Gauss-Seidel 0.0138 1.20520618002085e-11 

SOR 0.0111 2.38221171263545e-13 

   

The residuals of the solution results of all the algorithms tested above are under the control of 

magnitude -1010 . It can be seen from the above table that the direct LU decomposition method of 
column selected and all selected is the method with the smallest relative residual, that is, the most 

accurate solution result. But the direct method running time is relatively long, the shortest running 

time method is Jacobi iterative method. 
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4.2 Application matrix 

Since the direct method is, in essence, based on elementary transformations of matrices, it is 

theoretically equivalent to matrix decomposition. Therefore, all kinds of direct methods in computer 

implementation will inevitably involve matrix-by-matrix operation, which directly destroys the 

sparse structure of the matrix, resulting in problems such as memory overflow and long calculation 

time. As a result, it is not suitable for large-scale sparse matrix. 

The iterative method for solving linear equations is specially designed for large sparse matrices. Its 

characteristic is that each iteration only involves the operation of matrix multiplies vector, which does 

not destroy the sparse structure of matrix, and is suitable for large-scale sparse matrix. 

However, for the classical iterative method, the convergence property depends on some properties of 

the coefficient matrix, and the principal element of the matrix is required to be non-zero. Therefore, 

in the process of solving, the matrix needs to be preprocessed, which further leads to the loss of 

sparsity, and also causes the problem of over-long iteration stride to a certain extent. This will result 

in non-convergence even though the spectral radius of the matrix is less than 1, which is also a major 

limitation of the classical iterative method. 
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