Analysis of Class I Genes and Patterning Genes in D. Melanogaster

Evelyn Yilin Chen¹, Yichen Liu², Xinyi Tian³
¹International School of Beijing, Beijing 200022, China;
²The Perse School, Cambridge 01223, The United Kingdom;
³Western Reserve Academy, Hudson, Ohio 44236, US.

Abstract

In D. melanogaster, the DNA-binding protein Zelda is a master transcriptional activator that is required for the maternal-to-zygotic transition and promotes timely and robust transcriptional activation of embryogenesis. The aim of this paper is to analyse the differences and similarities between patterning genes and class I genes in terms of their zld regulated expression on genetic and physiological levels in Drosophila.

Keywords

Zld, Drosophila, Maternal-to-zygotic transition, Patterning genes, Class I genes.

1. Introduction

In Drosophila, the DNA-binding protein Zelda (also known as Vielfaltig) is a master transcriptional activator that is required for the maternal-to-zygotic transition and promotes timely and robust transcriptional activation of embryogenesis, allowing the early developmental events to be coordinated and cell differentiation properly regulated [1]. zld is first detected in 1-2 hour of embryogenesis (mitotic cleavage cycle 8-13), followed by another burst of activity in the third hour (cycle 14), which is characterised by the cellular blastoderm formation and cellularisation [2]. Physiologically, zld transcripts are first ubiquitously expressed in germline cells and later on restricted to the nervous system.

The temporal dynamic of zld regulates a wide range of genes: activating class I genes and potentiating the transcription of patterning genes. The Rushlow lab found that “Zld binds to genes involved in early developmental processes such as cellularization, sex determination, neurogenesis, and pattern formation” [2]. In zld absent mutants, many target genes remain deactivated, while others, particularly the patterning genes, exhibit delayed transcriptional activation or weak and sporadic expression.

Furthermore, zld binds to a cis-regulatory heptamer motif CAGGTAG and related sequences, referred to as TAGteam sites. It was recognised that zld has a stronger tendency to bind close, usually with 2kb, to the transcription start site (TSS), as higher the level of gene expression, closer to the TSS is zld’s binding sites located [2].

In this report, class I genes—esg, sc, and Tsg—are analysed in comparison with patterning genes—ths, gt, and sog—for defining differences and similarities between them, in terms of zld regulated expression and transcription factors’ relationship with expression patterns.

2. Methods

Overall, the results of this paper is derived based on secondary information and genetic data analysis by utilising a variety of genomic browsers.

Integrated Genome Browser (IGB)
Six gene tracks and TAGteam sites tags are loaded into the browser to create a lucid, holistic view on the zld protein’s interaction with TAGteam sites, the relationship between zld and RNA polymerase’s binding sites, cycle 12-14 genetic activation’s differences, and the comparison between wild type and zld knocked down (zkd) in terms of their genetic expression.

JASPAR
Used to obtain transcription factor (TF) binding profiles of six taxonomic groups’ species stored as position frequency matrices (PFM) and transcription factor flexible models (TFFM).

Flybase
An bioinformatics database that contains the primary repository of genetic and molecular data for D. melanogaster. This browser is used to determine genes’ expression pattern to deduce each of their function and interaction.

Flyexpress
Image-matching search engine of spatiotemporal expression patterns data of D. melanogaster in embryogenesis, containing standardized images submitted from BDGP, Fly-FISH and other researchers’ publications. It is used in this paper to research expression patterns to hypothesis the relationship between a gene and its transcription factors.

3. Data analysis
3.1 Patterning Genes, ths, gt, sog, Zld Regulated Expression

![Figure 1: Thisbe (ths)](image)

![Figure 2: Giant (gt)](image)

![Figure 3: Short gastrulation(sog)](image)
Ths is a patterning gene localised on chr2R: 11,790,366-11,812,015, and, according to RNA Pol II chip, ths-RA is the one out of two isoform that is expressed. The majority of the gene is composed of introns, so only a small portion of the 21,650 bp gene is expressed to synthesise functional protein. Furthermore, the zld peak and its enhancer are both situated in the introns region instead of 2kb upstream of TTS. There are 4 TAGteam sites within ths, but only 1, CAGGTAG, attracts zld protein binding and is located 4135 bp downstream of TSS. zld’s enrichment is the lowest at the beginning of MZT (cycle 8-9). However, as illustrated in JASPAP’s RNA polymerase chip-seq tracks (colour indigo), transcription presents in none of the cycles, suggesting that ths is not expressed. The zkd track (blue) is not affected, for it is equally not transcribed.

Gt is a relatively small gene situated on the negative strand of chrX:2,427,113-2,428,967. Gt is mainly composed of exons, with one CAGGTAG site upstream. Gt’s expression is first initiated in NC 13 and more strongly expressed in the later stage of MZT. It is apparently relying on zld’s regulation, as indicated by the subdued expression on zkd, but the moderate level of expression denotes the presence of other transcription factors.

Sog is located on the negative strand of chrX:15,604,576-15,626,540. Similar to ths, sog is a relatively large gene mainly composed of introns, where the enhancer and zld peak are. It has one CAGGTAG site located 100,545 bp downstream of the TSS, within an intron section. The zld peaks from mitotic cycle 8 to 14 are of similar heights and shapes, indicating that sog is enriched with zld throughout the MZT. However, its transcription does not begin until NC 13, which implies that sog’s expression is not mandated until NC 13, in addition to its requirement of other TFs’ cooperation to be transcribed.

The reason why that patterning genes’ TAGteam sites are usually localised within the gene’s intron instead of following the zld binding sites’ 2 kb upstream rule, is likely because zld is not directly involved in the activation of class 2 genes’ transcription, so it is unnecessary for zld to bind in the proximity of RNA polymerase’s promotor. However, since it potentiate the process, it binds to an enhancer, which can be anywhere around or within the gene.

Expression Pattern Explained in Relation to TFs

![Figure 4. Ths’ expression (a) stage 1-3, (b) stage 4-6, (c) dorsal view, (d) later embryonic development. Source: Stathopoulos, 2004 [3]]
Throughout the course of development, the expression is mainly concentrated in the mesodermal region of the embryo, which includes the cardioblast, neuroblast, and other appendages’ primordium. It’s in situ hybridisation stain is visible in the germband and absent in the lateral-ectoderm region. From a dorsal view, the expression is absent from the midline. Transcriptional repressors Snail and twist inhibit the expression of genes promoting dorsal cell fates. Thus the combination of dl, Twi, and Snail in the ventral-most nuclei not only promotes mesoderm formation but also prevents cells from adopting the mesectoderm and lateral ectoderm fates. The darkened blue dots are attributable to the involvement of gap genes even-skipped (eve) and hunchback (hb), as they counteract the expression pattern by repressing each other at antagonistic regions [4]. Furthermore, the expression pattern of the elongated germ band is the result of multiple homeotic genes: Sex combs reduced (Scr) is expressed in prothoracic segments of the ectoderm, and pb expressed in the mouthpart anlagen. Lastly, the gene codes for observable patterns but also functional organ systems cardioblast and neuroblast, the formation of which is the combined result of TFs such as tin, bap, Gsc, and one-cut. 

Gt first becomes up-regulated throughout the anterior half of the embryo and in a cap of posterior cells. By stage 4-6, gt is lost from the anterior–dorsal–lateral regions of the embryo, where the future brain is patterning. These three stripes on the embryonic head correspond to the future ventral furrow lip, epipharynx and hypopharynx. Specifically, gt is expressed in antennal anlage, central brain anlage, dorsal head epidermis anlage, visual anlage, ventral ectoderm, head mesoderm. From previous works, it had been speculated that gt’s expression in the anterior and posterior are separately regulated. In this case, we see that high hb transcription stimulated by Bicoid in the anterior, forming a hb protein gradient, which likely is responsible for the activation of gt in the anterior region. Since hb does not reach its peak expression until NC12, explaining why gt has a low level of transcription at this stage as shown in the IGB.

Short gastrulation (sog) is a key dorsal-ventral patterning gene that promotes neural development by preventing other dl regulated proteins from diffusing into the neuroectoderm and suppressing expression of neural genes. It is involved in the development of neurogenic structure, and then migrate to be sparsely distributed in the elongated germband and mainly localised in the brain, visual, and wing discs.

The dl binding motif has the highest score and frequency, which precisely is expressed in regions other than dorsal-ventral gradient, where sog is localised. Hkb is transcribed in two domains in the cellular blastoderm, forming an anterior and a posterior cap, regions where sog’s lateral strip is absent. It’s possible that hkb represses sog’s expression on a physiological level, but, functionally, it acts to regulate the development of neurogenic structures and brain epidermis. Lastly, hb and bcd are highly expressed in the anterior region and are activated relatively late, explaining sog’s stage 7-8’s frontal focalised expression.
3.2 Class 1 Genes: esg, sc, tsg

Esg is localized on chr2L:15,333,866-15,336,138, with a single exon encoding an RNA polymerase II transcription factor that possesses five Zn²⁺-finger DNA binding domains. Sc is on the positive strand of chrX:396,060-397,497, with a CAGGTAG site 120bp upstream of its TSS. Tsg is located on the negative strand of chrX:11988062-11988948. There are 2 zld binding sites prior to Tsg, explaining the exceptionally broad peak, but both of them are on the positive strand, revealing that zld binding regulation can occur on the opposite strand of the gene.

Cycle 8 and 13 marks the beginning and end of MZT transition, and, as shown in IGB snapshots, zld transcription factor enrichment is high in both of these cycles, suggesting its activity throughout the MZT, which supports the previously discovered phenomenon that zld potentially regulate embryonic development as it’s one of the earliest activated genes with long-term expression. Additionally, although zld is operative since mitotic cycle 8, all three class I genes’ transcription does not start until...
NC 13 then RNA polymerase’s activity diminishes immediately, shown by the absence of RNA polymerase peak in NC 12 and the relatively lowered peak in NC 14, indicating that their expression is relatively late in embryogenesis and each has only a short-expression duration.

Expression Pattern Explained in Relation to TFs

Figure 10 Esg expression (a) Stage 14 embryo. (b) Stage 16 embryo.
Source: Hayashi 2013 [5]

Figure 11 Scute expression (a) stage 1-3, (b) stage 4-6, (c) stage 9-10
Source: flyexpress

Figure 12 Tsg’s expression throughout the embryogenesis
Source: Hong 2015 [6]
Esg is a class I gene involved in early embryonic development, the expression of which is primarily ectodermal with a dynamic pattern, as it encodes for multiple anatomical features. esg transcript is detected in the presumptive wing, leg, genital, and haltere discs, as well as in the central and peripheral nervous system, cephalic and dorsal thoracic region, and digestive system cells (intestinal, gut, oesophagus). Specifically, nub is expressed in the wings and legs disc, and trx is involved in the formation of genital and haltere imaginal disc. The growth of central and peripheral nervous systems are regulated by slp1, bgb, fkh, and trx. Also, the dorsal thoracic region stained as shown in fig. 10 consists of drosophila’s digestive and cardiovascular systems, explaining the presence of TFs tin, trx, fkh, and kni. In general, the pleiotropic gene esg’s expression requires multiple TFs and cascade-like signalling functions that affect various targets.

Sc transcripts are responsible for the formation of embryonic nervous systems, wing discs, and a variety of sensory organs. Its expression is focused in the elongated germband region, which corresponds to a variety of central organ systems and later appendages’ primordium. Tin, responsible for the development of cardiovascular tissues, is expressed chiefly in the germband. Trx is a central regulatory element, and it contributes to the formation of ventral nerve cord primordium and central brain primordium, but, more importantly, it also regulates the development of wing discs, haltere discs, and imaginal discs. Pdp1 regulate expression in muscles and circadian clock neurons, but its binding site is also highly enriched on sc. In summary, TFs with highly enriched binding sites on sc are all tightly related to sc’s expression, yet each TF may only contribute to parts of the formation pattern.

Tsg is required for specification of a narrow strip of the cells towards the dorsal midline, which give rise to the amnioserosa. tsg first appears in stage 4 embryos, expressed chiefly in two domains—the anterior cap and a broad mid-dorsal area with the expressions continuous across the dorsal midline. Then towards stage 5, the expression has reconstructed into 4 shadow stripes in the mid-dorsal region as well as a paired domain in the anterior region. During stages 7 and 8, the anterior expression dims and the mid-dorsal stripes are located between the anterior and posterior transverse furrow [7]. By sharing common characteristics and interacting with sog, tsg plays a role in Bone Morphogenetic Protein signalling, and create a complex of an antagonist of BMP activity [8].

4. Discussion

Zld regulation
While both patterning and Class I genes contain zld peaks, they are regulated by zld differently. Class I genes’ transcription depends on zld activation, which is why zld sites are located in 300 upstream of TSS and is at the vicinity of a TATA box. On the other hand, zld only potentiates patterning genes’ transcription and binds to their enhancer. However, it’s certain that, after the evaluation of 2 types of genes, zld’s involvement in embryonic gene activation is vital, for, regardless it’s a patterning gene or a class I gene, the zkd peaks are significantly lower than the zld present tracks, signifying subdued or loss of expression.

5. Conclusion
Unlike patterning genes’ TFs’ functions can be hypothesised via observable features as stained in the in situ hybridisation image, class I genes TFs’ interaction are deduced from their anatomical functions, for class I genes’ expression is relatively more dynamic and are not localised to a specific pattern. Also, patterning genes are expressed throughout NC 13 and 14, but Class I genes are frequently transcribed only in NC 13.

6. Further Researches
For this, its expression is tightly related to pyramus (pyr), we would like to research more on their linkage. Additionally, cardioblast and neuroblast developments are regulated by both ths and esg, we wonder if they employ the same pathway or independent ones. Moreover, all of the regulatory
pathways are deductions made based on genome browsers and preview researches, which render them relatively unsubstantiated, so future lab-work is needed before any reliable conclusions can be made. Methods such as transgenesis/mutagenesis and Yeast one-hybrid assay can be used to verify the hypotheses.

References


