Controller Reset Slice Optimization Based On Virtual Prototype

Hongzhi Yin

Shanghai Maritime University, Shanghai 201306, China.

573369456@qq.com

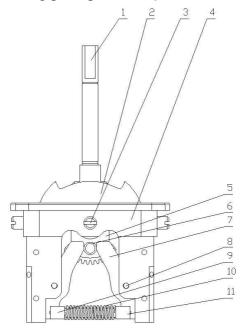
Abstract

The operating force required for the crane controller is large, and a large amount of wear is easily generated between the small roller and the rotating side reset piece. The virtual prototype technology is used to simulate and analyze the controller. The Bezier curve design is adopted for the contact piece of the reset piece and the small roller, and the platform for integrated modeling, simulation and optimization of the virtual prototype is established, and the optimization of the domestic controller is completed by using the platform. The results show that the integrated method of virtual prototype is effective and has guiding significance for practical work.

Keywords

Controller, virtual prototype, integration.

1. Introduction


Virtual prototyping technology, also known as mechanical system dynamic simulation technology, is a computer-aided engineering (CAE) technology that developed rapidly in the 1980s with the development of computer technology. In the development and design of new products, the rational use of virtual prototyping technology allows designers to simulate the possible motion states and stresses of the designed products in various possible virtual environments, and quickly analyze and evaluate the design. Rationality, optimization of design parameters, provide reasonable data for future design; at the same time, it can partially replace real prototypes for various experimental studies, and even some experiments that are difficult or impossible to perform can be carried out in a virtual environment. Virtual prototyping technology can be used to simulate a real prototype for verification design, which not only greatly shortens the equipment development cycle, but also greatly improves the design quality and design efficiency of the product.

2. Virtual Prototyping

The automatic analysis software for mechanical system dynamics ADAMS is a very famous virtual prototyping software developed by American companies. On the one hand, ADAMS is a virtual prototyping application software that allows users to easily perform static, kinematic and dynamic analysis of virtual prototypes. On the other hand, it is also an analysis and development tool for virtual prototypes. Its open program structure and multiple interfaces can be used as a secondary development tool platform for special industry users to perform special virtual prototype analysis. ADAMS uses interactive graphical environments and component libraries, constraint libraries, and force libraries to create fully parametric mechanical system geometry models, as well as static, kinematic, and dynamic analysis of virtual mechanical systems, output displacement, velocity, acceleration, and force curve.

3. Controller Introduction

In cranes, the controller is often used as an input device for the crane to control the lifting, luffing, rotating, walking, etc. of the crane. In this paper, the domestic YGK3 handle is taken as an example to explain its components and working principle [1]. *References*, see Figure 1.

1. operating lever; 2. limit plate; 3. adjusting screw; 4. box; 5. bending axis; 6. small roller; 7. reset piece; 8. fulcrum rivet; 9. Reset guide sleeve; 10. Reset spring; 11. Reset guide rod

Figure 1. Controller body part

The working principle is as follows: when the worker pulls the operating rod, the operating rod contacts the bending shaft to drive the bending shaft to rotate, and the small roller on the bending shaft pushes the reset piece, so that the reset piece rotates around the fulcrum rivet, and simultaneously pushes the lower end of the reset plate. The guide sleeve or the reset guide rod is reset, so that the reset guide rod enters the hole of the reset guide sleeve, and the distance between the two faces of the fixed compression return spring is reduced, so that the compression return spring length is reduced and the compression amount is increased. When the worker releases the operating lever, the compression return spring force, the guide sleeve (or the reset guide rod) under the action of the reset piece pushes the small roller and the curved axis. The curved axis pushes the lever back to its original position. Thus the reset of the handle is achieved [1].

4. Controller Virtual Prototype

The controller 3D model is imported into ADAMS through the interface between ADAMS and SolidWorks, thus avoiding the cumbersome and difficult to implement modeling process in ADAMS. The controller body model imported into ADAMS has no quality, and it is necessary to add materials to each part according to the material properties of the part icon annotation. In ADAMS, you can quickly add material properties to individual parts using the Table Editor. References, see Figure 2.

ISSN: 2414-1895

Volume 5 Issue 11, 2019 DOI: 10.6919/ICJE.201910_5(11).0001

🖌 🔠 fao i=fii	joystick1_main_structure.steel				Apply Of
	Adams_Id	Loc_X	Loc_Y	Loc_Z	Material_Type
ground	1	(NONE)	(NONE)	(NONE)	.joystick1_main_structure.steel
YGK5_03_07_6	2	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_03_09_6	3	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_27_6	4	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_01_05_01_6	5	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_01_05_01_1_6	6	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_05_6	7	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_05_1_6	8	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_05_2_6	9	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_05_3_6	10	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_01_05_01_2_6	11	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_01_05_01_3_6	12	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_09_6	13	0.0	0.0	0.0	joystick1_main_structure_steel
YGK5_01_09_1_6	14	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_10_6	15	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_12_6	16	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_08_6	18	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_08_1_6	19	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_08_2_6	20	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_08_3_6	21	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5_01_08_4_6	22	0.0	0.0	0.0	.joystick1_main_structure.steel
YGK5 01 08 5 6	23	0.0	0.0	0.0	.iovstick1 main structure.steel

Figure 2. Add material with the table editor

Import the controller model into ADAMS, change some parameters, perform simulation analysis, and the engineering quantity is relatively large. So by writing a macro command, import it into the window where the macro command is written, and then select the name of the macro command to run the macro command. After the macro command runs successfully, the controller model will automatically add constraints and loads. This saves a lot of time and increases efficiency and saves a lot of manpower. References, see Figure 3.

Create /View Macro			23
Macro Name MACRO_1			
User-Entered Command		Use M	acro name
Wrap in undo C Yes 📀 No			
Commands			
<pre>variable modify variable=.shoubin variable modify variable=.shoubin variable modify variable=.shoubin variable modify variable=.shoubin variable modify variable=.shoubin variable modify variable=.shoubin entity attributes entity_name=.sh undo end group modify group=SELECT_LIST object undo end</pre>	g.SPRING_4 g.SPRING_4 g.SPRING_4 g.SPRING_4 g.SPRING_4 g.SPRING_4 oubing.SPR	.damping_m .damping_c .damping_s .free_leng .i_dynamic .j_dynamic ING_4 colos	ode str= oefficie: pline ob th_mode _visibil _visibil
undo begin suppress=yes mdi marker set_parent marker=MARKER_ mdi marker set_parent marker=MARKER_ undo end ! Change characteristic var set var=.shoubing.SPRING_4.stiff var set var=.shoubing.SPRING_4.stiff	115 new_pa	rent=.shoul	oing.YGK
<pre>var set var=.shoubing.SPRING_4.dampi var set var=.shoubing.SPRING_4.dampi</pre>			r="linea l=2.0
<pre>var set var=.shoubing.SPRING_4.free_ var set var=.shoubing.SPRING_4.free_ var set var=.shoubing.SPRING_4.prelo var set var=.shoubing.SPRING_4.sprin var set var=.shoubing.SPRING_4.dampe var set var=.shoubing.SPRING_4.i_dyn </pre>	length ad g_visibili r_visibili	ty str="o ty str="i	="Consta real=4 real depends" never" r="Off"
	ОК	Apply	Cancel

Figure 3. Write a macro command window

At this point, the virtual prototype of the controller has been set up, and this model can be used for kinematics and dynamics simulation.

5. Reset Slice Optimization

The shape of the reset piece is optimized by reducing the contact force between the small roller and the rotating side return piece. The contact surface of the original controller reset piece is a straight surface. Now consider designing the contact surface as a curved surface to ensure that the contact force between the small roller and the rotating side reset piece is minimized during the movement of the controller. Now in SolidWorks, the reset sheet contact surface design curve is designed as a cubic

Bezier curve, and the Bezier curve shape is controlled by two of the points in the case of the known initial point and end point. References, see Figure 4.

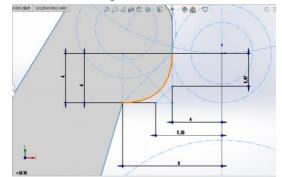


Figure 4. The Bezier curve design on the reset slice

For the reset piece, after optimizing its shape, the simulation is carried out directly in the ADAMS to optimize the contact force between the small roller and the rotating side return piece before and after optimization, and the optimization effect is determined. For the reset size that needs to be changed in real time and optimized to achieve the target, the integrated integration idea is fully utilized, and Isight software integration SolidWorks-ANSYS-ADAMS-MATLAB is used to complete the integrated parameter modeling, simulation, analysis, calculation, optimization of the platform. Using the platform to optimize the critical dimensions of the reset piece using the Latin hypercube test design method, the optimal value of the critical size of the reset piece when the contact force is minimum is obtained.

So far, the platform for integrated modeling and simulation optimization of the controller virtual prototype has been completed.

The Latin hypercube test design method was added to the integrated controller integrated modeling, simulation, and optimization platform, and D2 and D3 were used as factors, ranging from 0 to 4 mm and 4 mm to 8 mm, respectively, and 9 tests were performed. References, see Figure 5.

\Rightarrow	🛃 🔒	😽 🔒	
7	D29草图18fl_Part	D39草图10fl_Part	jiechu
1	0.0	6.5	232.74
2	0.5	6.0	384.7
3	1.0	5.0	228.29
- 4			201.09
5	2.0	5.5	228.07
6	2.5	4.0	238.35
7	3.0	7.5	225.69
8	3.5	8.0	225.69
9	4.0	4.5	317.69

Figure 5. Test design result

It can be seen that the optimal design is D2 = 1.5 mm and D3 = 7.0 mm. After the optimization, the contact force between the small roller and the rotating side return piece is greatly reduced. References, see Table 1.

Tuble 1. Optimization result comparison				
	D2	D3	Result	
Before	0.0	6.5	232.74	
After	1.5	7.0	201.09	

Table 1. Optimization result comparison

6. Conclusion

This paper adopts virtual prototype technology to optimize domestic controllers. In order to realize the integrated modeling and simulation optimization of the virtual prototype, the integrated thinking is used to integrate SolidWorks, ANASYS, ADAMS, and MATLAB software to realize the interaction of software data and files in the optimization process, which greatly simplifies the operation steps of the designer and saves optimization time.

References

- [1] J.Y. Wang. Modification of the main controller of gantry craner, Lifting and Transport Machinery, vol. 11 (1999), 28.
- [2] X.F. Zhao. Flexible body analysis in ADAMS, Electronic Machinery Engineering, vol. 22 (2006), 62-64.
- [3] Z.X. He. Research on rigid-flexible coupled dynamics modeling method based on experiment, Mechanical Design, vol. 25 (2008), 76-78.
- [4] Q.H. Hu. Research progress on several key supporting technologies of virtual prototype, Journal of System Simulation, vol. 20 (2008), 6186-6189.
- [5] X.X. Yang. Development and application of virtual prototype technology, Industrial Technology, vol. 9 (2011), 132-133.
- [6] P.A. Du. Research on Technology and Method System of Virtual Prototype Technology, Journal of System Simulation, vol. 19 (2007), 3447-3451.