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Abstract 

Computer vision and image processing experiment software for image processing 
technology has appeared in the market. For beginners and algorithm researchers of image 
processing, the system used to develop learning experiments has become a major research 
topic for professionals. This article focuses on the image restoration technology, and 
discusses the inverse filtering, Wiener filtering, and constrained least squares filtering 
algorithms in detail. This article mainly deals with the commonalities faced by beginners 
and algorithm researchers. 

Keywords  

Image Restoration ; Image Recovery; Inverse Filtering; Wiener Filter. 

 

1. Introduction 

The classical image restoration algorithm occupies an important position in image processing. The 

prerequisite for its restoration is the need to know the point spread function and the noise distribution. 

Some of these algorithms appear early and have achieved very good results. They have been widely 

used. 

2. Classical algorithm introduction 

There are two types of image restoration algorithms, linear and nonlinear. The linear algorithm 

achieves deconvolution through inverse filtering of the image. Such a method is convenient and quick, 

without loop or iteration, and the deconvolution result can be obtained directly. However, it has some 

limitations, such as the non-negativity of the image cannot be guaranteed. The non-linear algorithm 

continuously improves the quality of restoration through a continuous iterative process until the preset 

termination conditions are satisfied, and the results are often satisfactory. However, the iterative 

process leads to a large amount of calculations, and it takes a long time to recover the image, 

sometimes it may take several hours. Therefore, in practical applications, it is also necessary to 

consider the two processing methods comprehensively and select them. 

The Wiener filtering method was proposed by Wiener and achieved good results in processing 

one-dimensional signals. After that, the Wiener filter method was used for two-dimensional signal 

processing, and it also achieved good results. Especially in the image restoration field, Wiener filtering 

has a small amount of calculation and a good recovery effect, and thus has been widely used and 

developed. 

The EM algorithm is an iterative algorithm proposed by Dempster et al. for estimating the maximum 

likelihood of a parameter. It is an algorithm for estimating parameters of a probabilistic model from 

incomplete observation data. This algorithm is widely used in incomplete data processing and analysis. 
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For inverse filtering, inverse filtering is performed on the image to achieve deconvolution. This type of 

method is fast and convenient. It does not require looping or iteration. It can directly obtain 

deconvolution results. 

The constrained least squares method is easily implemented by a simple program of the computer but 

cannot obtain such a certain solution of irrational roots. 

Through comparison and analysis, the image restoration algorithm of this paper chooses inverse 

filtering algorithm, Wiener filtering algorithm and constrained least squares restoration algorithm. The 

above three algorithms are relatively simple and easy to understand, and user learning can be easily 

used. 

3. Image degradation/restoration model 

Image restoration technology is an attempt to use the prior knowledge of the degenerative process to 

restore the degraded image to its original condition, that is, to analyze the degraded environmental 

factors according to the cause of the degradation, establish a corresponding mathematical model, and 

restore it along the inverse process of degrading the image. The purpose is to eliminate or reduce the 

degradation of image quality caused by image acquisition and transmission, and to restore the original 

image. Therefore, the recovery technique is to model the degradation and use the opposite process to 

process the original image. 

If an original image is used, an observation image is generated by a degenerate function and an additive 

noise term. In general, the degenerate function can be considered linear, position-invariant, and the 

noise is independent of the position and the current pixel value. The degradation process can be 

modeled as follows. 

       , , , ,g x y f x y h x y n x y                                          (1) 

Where  ,h x y  is the spatial description of the degenerate function, also known as the PSF, the point 

spread function. * indicates space convolution and  ,n x y  is additive noise. The degenerate model of 

formula (1) can be expressed in the form of a vector matrix as the following equation. 

g Hf n                                                                    (2) 

In equation (2), g is the observation image, assuming that its size is N , f is a sample, and n  is noise. 

g , f , and n are the same size, they are N2*1 column vectors, and H  is the 
2 2N N PSF parameter 

matrix. If it is a spatially invariant PSF, then H  is a block circulant matrix. The problem of estimating 

f  from the model is called the linear reversal problem, which is also the basis of classical image 

restoration research. 

4. Principle of algorithm 

4.1 Inverse filter algorithm 

The inverse filter method is the earliest use of an unconstrained recovery method, which is commonly 

used to process degraded images transmitted from a spacecraft. The algorithm is as follows. 
2

2
 n 

T

Tn n g H f g H f g H f
     

        
   

                              (3) 

For the image degeneration model of formula (3), when the statistical property of n is uncertain, one 

f-estimator needs to be searched so that Hf is the closest to g in the sense of the minimum mean square 

error, that is, the modulus or norm of n is to be minimized. . 

According to the above formula, the recovery problem can be regarded as the minimum value for the f, 

as shown below. 
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 
2

L f g H f


                                                                    (4) 

Differentiating L and setting the result to zero, and then setting M=N and H-1 to exist, the 

unconstrained recovery formula can be obtained, as shown below. 

   
1 1

1 1T T T Tf H H H g H H H g H g
  

                                      (5) 

According to the discussion of the circulant matrix diagonalization, formula (5) can be written as the 

following form of estimation. 

  
 

 

,
u, v

,

G u v
F

H u v



                                                           (6) 

Then use the inverse Fourier transform of  ,F u v  to obtain the corresponding estimate of the image. 

This method is called inverse filtering and the recovered image can be expressed by formula (7). 

              
 

 
1 1 ,

, ,
,

G u v
f x y F F u v F

H u v

 
 

  
       

                                       (7) 

From equation (7) we can see that if  ,H u v  is zero or very small on the u plane, it will bring about 

computational difficulties. On the other hand, noise can also cause more serious problems. If noise is 

added, the following formula can be obtained. 

     
 

 

,
, ,

,

N u v
F u v F u v

H u v



                                                    (8) 

From equation (8), we can see that if  ,H u v  is zero or very small on the u and v planes,  ,N u v  and 

 ,H u v  will make the recovery result greatly different from the expected result. In practice,  ,H u v  

decreases rapidly with the increase of the distance between the  ,u v  and the origin, while the noise 

 ,N u v  changes slowly. In this case, recovery can only be done closer to the origin (closer to the 

center of the frequency domain), so in general the inverse filter does not happen to be exactly  ,H u v , 

and some function of u and v can be recorded. For  ,M u v , often referred to as the recovery transfer 

function, an improved method is shown below. 

 
 

 

, ,
,

, ,

K H u v d
M u v

H u v other


 


                                    (9) 

Where K and d are constants less than 1, and d is selected to be smaller. 

4.2 Wiener filtering algorithm 

Wiener filtering is one of the earliest and most well-known linear image restoration methods. Wiener 

filtering is based on the premise that the image signal can be approximated as a stationary random 

process. According to the statistical error between  ,F x y  and  ,f x y


, 
2e achieves the minimum 

criterion to achieve image recovery. The formula is as follows. 

   
2

2 min , ,e E f x y f x y
 

     
                                             (10) 

In the formula, E represents the expectation operator,  ,f x y  represents the non-degraded image, 

and  ,f x y


 is the recovered image. If we consider the restoration as satisfying the condition of 
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formula (10), we select the linear operator Q (transformation matrix) of known f


 so that Q and f


 are 

the smallest. You can usually solve this problem with the Lagrangian multiplier method. Let a be the 

Lagrangian multiplier and find f


 that minimizes the following criteria functions. The formula is as 

follows. 

2 2
2

L f Q f a g H f n
    

     
   

                                      (11) 

As with formula (11), there is a constraint recovery formula (let s=1/a), as shown below. 

1
T T Tf H H Q Q H g

 

                                                         (12) 

Define  T

fR E ff ,  n

TR E nn , define 1T

f nQ Q R R , and substitute it into equation (12) to get 

the frequency domain expression, as shown below. 

 
 

 

     
 

2

2

,1
, ,

, , , ,n f

H u v
F u v G u v

H u v H u v S u v S u v


 
 
 
 

                            (13) 

Among them,  ,H u v  represents the degeneracy function,  ,nS u v ,  ,fS u v  noise power ratio. 

   
2

, ,nS u v N u v  indicates the power spectrum of the noise. 

   
2

, ,fS u v F u v  represents the power spectrum of the non-degraded image. 

As long as the inverse Fourier transform is obtained for  ,F u v


, the recovered image  ,F u v


 can be 

obtained. It can be seen that there is no pole in the Wiener filter. Even when  x,H y  is equal to 0, the 

denominator of the Wiener filter is at least equal to the noise power ratio, so the noise is suppressed. 

The power of the signal and the noise is usually not known. Instead of  ,nS u v ,  j ,S u v  is replaced 

by a constant array K. Then formula (13) is approximated by the following equation. 

 
 

 

 
 

2

2

,1
, ,

, ,

H u v
F u v G u v

H u v H u v K

  
 
  

                               (14)  

It can be seen that when K is 0, the Wiener filter is converted into a standard inverse filter, and the 

inverse filter is strictly derived from the degeneracy model. So when K is not equal to 0, although the 

noise can be suppressed from expanding, the recovered model does not have the deconvolution filter 

accurate, resulting in distortion of the restoration. The larger K is, the better the effect of suppressing 

noise is, but the recovery is inaccurate and the image is blurred. The smaller K is, the more accurate the 

restoration is, but the noise suppression effect is not good. 

4.3 Constrained Least Square Filtering 

The constrained least-squares filter formula starts from the following equation to determine the 

transformation matrix Q. In order to reduce the oscillation, an optimal criterion based on a smooth 

measure can be established. For example, some second-order differential functions may be minimized, 

and the second-order differential of  ,f x y  at  ,x y  may be approximated as follows. 

 

       

2 2

2 2
4 ,

1, 1, , 1 , 1

f f
f x y

x v

f x y f x y f x y f x y

 
  

 

        
 
             (15) 
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The second-order differential can be obtained by convolving  ,f x y  with the following operators. 

 

0 1 0

, 1 4 1

0 1 0

p x y

 
 

  
 
  

                                               (16) 

The optimal criterion based on this second-order differential is as follows. 
2

2 2

2 2
min

f f

x y

  
 

  
                                                      (17) 

The constraints of this function are as follows. 
2

2
g H f n



                                                          (18) 

The frequency domain solution to this optimization problem is given by equation (19). 

 
 

   
 2 2

,
, ,

, ,

H u v
F u v G u v

H u v s P u v

  
 
  

                                (19) 

Where s is a parameter that must be adjusted so that the constraints are satisfied and  ,P u v  is the 

Fourier transform of the function  ,P x y . 

5. Image restoration evaluation method 

Artificial evaluation of the image restoration effect: The restoration degree of the restored image is 

evaluated by human being, and the results obtained by the evaluation are obtained by the average score 

of a certain number of observers. 

  1

1

N

i i

i
N

i

i

n c

C

n









                                                           (20) 

ic is the score belonging to category i; in  is the number of observers who judge the image to belong to 

category i. The objective evaluation method is as follows. 

(a). Mean Squared Measure (MSE) 

   
2

1 1

1
, ,

M N

i j

MSE f i j f i j
MN  

                                     (21) 

In the formula(21):  ,f i j  and  ,f i j  are the original image and the restored image, respectively, 

and the definition of the relative mean square error MSE can also be obtained from the mean square 

error measure. 

(b). Signal to Noise Ratio Measurement (SNR) 

      

 

   

2

1 1

2

1 1

,

10lg

, ,

M N

i j

M N

i j

f i j

SNR

f i j f i j

 

 

 
 
 

  
     




                                     (22) 

(c). PSNR measurement: (PSNR) 
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   

2

2

1 1

2
10lg

1
, ,

M N

i j

SS
PSNR

f i j f i j
MN  

 
 
 

  
     


                              (23) 

(d). Signal to Noise Ratio Improvement Measure: (ISNR) 

   

   

2

1 1

2

1 1

, ,

10lg

, ,

M N

i j

M N

i j

f i j g i j

ISNR

f i j f i j

 

 

 
   

 
  

     




                                     (24) 

6. Conclusion 

This article mainly studies and expatiates on the following three aspects: the introduction of classical 

algorithms, image degradation/restoration model, and image restoration evaluation methods, and has 

achieved good results. In addition, the problem of further optimization of the algorithm, image 

processing algorithms developed rapidly in recent years, how to further study more optimized and 

efficient algorithms based on actual work, these are worthy of further exploration. 
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