
International Core Journal of Engineering Vol.4 No.11 2018 ISSN: 2414-1895

90

A Simplified Decoding Algorithm for Polar Codes

Qiuran Ma a, Hongfeng Gao b

Henan University of Science and Technology, Henan 471000, China.

aqiuranma@qq.com, bgaohongfenghappy@126.com

Abstract

The successive cancellation (SC) decoding method for polar codes under additive white
Gaussian noise (AWGN) channels is performed in the log-likelihood ratio domain. The
function uses a sum-product algorithm based on hyperbolic tangent rules. Hyperbolic
tangent requires a large number of multiplication and exponentiation operations, and the
decoder has a high complexity. In this paper, a polyline approximation algorithm is
proposed to approximate the hyperbolic tangent function (and its inverse function). The
hyperbolic tangent function and its inverse function are simplified to a 9-segment polyline
function. Simulation results show that for the polar code of the Bit Error Rate (BER)
obtained by the proposed algorithm is basically the same as the original algorithm, but the
decoding speed is increased by approximately twice.

Keywords

Polar code, SC decoding, Sum-product algorithm, Polyline approximation algorithm, BER.

1. Introduction

Arıkan proposed the polar code based on the concept of channel polarization [1]. The polar code is the

first channel coding method that is rigorously proved to be capable of achieving channel capacity in a

binary symmetric discrete memoryless channel (B-DMC) and has clear and simple coding and

decoding algorithms.

Under B-DMC, the SC decoding algorithm for polar codes has high reliability. Therefore, the

sum-product algorithm based on the hyperbolic tangent rule is used in the log likelihood ratio (LLR)

domain in general applications. However, when decoding, the sum-product algorithm involves the

hyperbolic tangent function and its inverse function calculation, and the computational complexity is

high. For medium and long codewords, the sum-product algorithm is difficult to guarantee real-time

performance. In the case of guaranteeing certain accuracy, decoding requires a lot of hardware

resources.

Many scholars have studied the sum-product algorithm [2-4,6]. C.Leroux approximates the

sum-product algorithm to the min-sum (MS) algorithm and applies it to polar codes decoding [3-4].

He also gives the structure diagram of the sign and magnitude processing elements, and the BER

performance curve under the MS algorithm. The BER performance obtained by the minimum sum

algorithm is the same as or similar to the sum-product algorithm [3]. In addition, the implementation of

the Low Density Parity Check Code (LDPC) decoder also uses the MS algorithm [5]. S.Papaharalabos

modified the sum-product algorithm for the LDPC code to a piecewise polyline function, and

presented the performance curve of the BER under the sum-product algorithm and the piecewise

polyline function algorithm. The simulation results showed that the performance of the BER obtained

by the segment polyline algorithm is better than the sum-product algorithm [2,6]. Other decoding

algorithms for polar codes are given in [7-11], and the hardware implementation architectures for polar

codes decoding are given in [12-15].

International Core Journal of Engineering Vol.4 No.11 2018 ISSN: 2414-1895

91

Based on the literature [2,3], this paper applies the segment polyline function algorithm in LDPC code

to the polar code decoding algorithm, and gives the BER and frame error rate (FER) performance

curves. The advantage of using the segment polyline function algorithm is that the linear operation is

used instead of the nonlinear operation in the sum-product algorithm, which simplifies the calculation

and facilitates the software implementation. The obtained BER performance is basically the same as

the BER performance obtained by the sum-product algorithm.

The rest of the paper is organized as follows. Section 2 introduces polar codes and SC decoding

processs. Section 3 describes the segment polyline algorithm and its implementation structure.

Simulation results are presented and discussed in Section 4. Section 5 gives a simple analysis of

complexity. Finally, conclusions are drawn in Section 6.

2. Polar Codes

2.1 Polar Code Encoding

A polar code (,)N K is a linear block code of length 2nN  and rate /R K N constructed. The

recursive concatenation process can be represented by a modulo-2 matrix multiplication as

nx uF (1)

Where 0 1 1{ , , , }Nu u u u is the input vector, 0 1 1{ , , , }Nx x x x is the coded vector, and the

generator matrix n
F is the n-th Kronecker product of the polarizing matrix

1 0

1 1

 
  
 

F . The input

vector u is composed of N bits, K of which carry information and are assigned to the K most

reliable bit channels. The remaining N K bits of u are set to a predefined value (typically 0) known

by the decoder. They are thus known as frozen bits, and their set is identified as . Vector x is

transmitted through the channel, and the decoder receives the vector 0 1 1{ , , , }Ny y y y .

2.2 SC Decoding in LLR domain

As shown in [3], the SC decoding algorithm successively evaluates the LLR of each bit ˆ
iu . Arıkan

showed that these LLR computations can be efficiently performed in a recursive manner by using a

data flow graph which resembles the structure of a fast Fourier transform. That structure, shown in

Fig.1, is named a butterfly based decoder. As shown in Fig.1, in the LLR domain, messages passed in

the decoder are LLR values denoted as
,l iLL , where l and i correspond to the graph stage index and

row index, respectively. Thus, the function f and g nodes in the decoder graph calculate the

messages using the following two functions:

1(,) 2 tanh (tanh() tanh())
2 2

a b
f a b

 
    (2)

ˆˆ(, ,) (1)s

g a b a bs       (3)

 where for the f function a denotes
1,l iLL 

, b denotes
1, 2ll i

LL
 

,for the g function a denotes

1, 2ll i
LL

 
, b denotes

1,l iLL 
, ŝ denotes

, 2
ˆ ll i
s


, 0 l n  , 0 i N  .

In Fig.1, 3

0y is the received signal of the channel after Binary Phase Shift Keying (BPSK) modulation,

and the log-likelihood ratio
2,iLL of the channel is obtained after initialization. The SC decoder

calculates 1,0LL , 1,1LL by two f functions according to the value of 2,iLL , and then use 1,0LL , 1,1LL

calculates 0,0LL through a g function. When 0,0 0LL  , 0û is judged as 0. When 0,0 0LL  , 0û is

judged as 1, and at this time, the first element to be judged is activated (the red line in Fig.1 represents

the decoding process of 0û), and pass the decision result to the element to be judged later. Then the SC

International Core Journal of Engineering Vol.4 No.11 2018 ISSN: 2414-1895

92

decoder calculates
0,1LL by one g function according to the value of

1,0LL ,
1,1LL , when calculating

the g function, we need to use the part sum
0,0ŝ ,

0,0 0
ˆ ˆs u . When

0,1 0LL  ,
1û is judged as 0. When

0,1 0LL  ,
1û is judged as 1, and at this time, the second element to be judged is activated, and pass the

decision result to the element to be judged later. By analogy, the decision elements are sequentially

activated in the order of 1 to N , and the source bits are sequentially decoded.

f

g

f

gDecision

Decision

Decision

Decision0û

1û

2û

3û

0,0ŝ

g

g

f

f

2,0ŝ 1,1̂s

0,1̂s

Decisioniû iLL ,0

Decision unit

)(0,1LL)(0,0LL

1l0l

y0

y1

y2

y3

f
a

b

),(baf 

ilLL ,

 f function node

g

ŝ

),,ˆ(basg 

ilLL ,

g function node

)(0,2LL

)(1,2LL

)(2,2LL

)(3,2LL

a

b

Fig. 1 Butterfly-based SC decoder with 4N  .

Given a received vector y corresponding to a transmitted codeword x , the SC decoder successively

estimates the transmitted bits 0u to 1Nu  . The first step is to decode 0u , the second step is to decode 1u ,

and the i step is to decode 1iu  . At step i , if i is not in the frozen set, the SC decoder estimates ˆ
iu

such that:

1

0

1

0

ˆPr(, | 0)
0, log() 0

ˆ ˆPr(, | 1)

1,

i

i

i

i i

y u u
if

u y u u

otherwise





 


 



 (4)

where 1

0
ˆPr(, |)i

iy u u a  is the probability that y was received and the previously decoded bits are
1

0
ˆ iu  , given the currently decoded bit is a , where {0,1}a . The ratio of probabilities in (2) represents

the LLR of bit ˆ
iu .

3. Polyline Approximation Algorithm

3.1 Polyline Approximation Algorithm Principle

It can be seen from formula (2) , the function f uses a sum-product algorithm based on hyperbolic

tangent rules, but hyperbolic tangent requires a large number of multiplication and exponentiation

operations, and the decoder has a high complexity. In this paper, a polyline approximation algorithm is

proposed to approximate the hyperbolic tangent function (and its inverse function).

The polyline approximation algorithm converts nonlinear functions into piecewise linear functions.

When the polyline algorithm is implemented, the structure is simple, and the continuous function is

estimated with a small number of parameters. The algorithm has been widely used in the fields of

modeling, analysis and estimation of a large number of nonlinear dynamic systems.

International Core Journal of Engineering Vol.4 No.11 2018 ISSN: 2414-1895

93

When implementing a hyperbolic tangent function with an FPGA, if a shift-and-add method is used

instead of a multiplication operation, more clock cycles will be consumed and the decoding delay will

increase. If the look-up table method is used, the value of the hyperbolic tangent function needs to be

stored in the ROM first, and then the input is converted into the look-up table address to obtain the

approximate value of the hyperbolic tangent function. However, the increase in the precision will

increase the size of the look-up table exponentially. Therefore, the table lookup method is only

applicable to applications with low precision requirements. If high-order polynomial approximations

are used, more adders and multipliers will be used, consuming too much hardware resources. In this

paper, the polyline approximation algorithm is used. This algorithm selects a part of the hyperbolic

tangent function and its inverse function to segment it, and the expression of each polyline function is

obtained according to the minimum mean square error. This method achieves a good balance between

speed, resources, and accuracy.

The hyperbolic tangent function is an odd function about the symmetry of the origin, the definition

domain is (,)  ,the value range is (-1,1). In this paper, the hyperbolic tangent function is

approximated, and a 9-segment piecewise polyline function is obtained. Its expression is formula (5).

Fig.2 shows the comparison of the curves of 1()h x and tanh()x functions. It can be seen from Fig.2

that the curves of 1()h x and tanh()x functions are very close, so using 1()h x instead of tanh()x

function ,the hardware implementation is simple and does not affect the decoding error rate.

1

-1 7.0

0.0012 0.9914 7.0 3.0

0.0524 0.8378 3.0 1.6

0.322 0.4064 1.6 0.8

() 0.83 0.8 0.8

0.322 0.4064 0.8 1.6

0.0524 0.8378 1.6 3.0

0.0012 0.9914 3.0 7.0

1 7.0

x

x x

x x

x x

h x x x

x x

x x

x x

x

 


    

     


    


   
   


  


  
 

 (5)

Each line in the polyline approximation function 1()h x can be expressed as:

1 1 1 1() ()* () 1,...,h x K i x b i i M   (6)

where 1 {0,0.0012,0.0524,0.322,0.83,0.322,0.0524,0.0012,0}K  ,

1 { 1, 0.9914, 0.8378, 0.4064,0,0.4064,0.8378,0.9914,1}b      , 1 9M  , 1()K i is the slope of the

straight line, x is the log likelihood ratio values of the channel, 1()b i is a constant, 1M is the number

of piecewise functions. In addition, let 1 { , 7.0, 3.0, 1.6, 0.8,0.8,1.6,3.0,7.0, }X        , 1X

represents the set of interval turning points.

The inverse hyperbolic tangent function is also an odd function about the symmetry of the origin, the

definition domain is (-1,1), the value range is (,)  . In this paper, the inverse hyperbolic tangent

function is approximated, and obtained a 9-segment piecewise polyline function 2 ()h x . Its expression

is formula (7). Fig.3 shows the comparison of the curves of 2 ()h x and
1tanh ()x

 functions. It can be

seen from Fig.3 that the curves of 2 ()h x and
1tanh ()x

 functions are very close, so using 2 ()h x

instead of
1tanh ()x

 function ,the hardware implementation is simple and does not affect the decoding

error rate.

International Core Journal of Engineering Vol.4 No.11 2018 ISSN: 2414-1895

94

-6 -4 -2 0 2 4 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

h
1
(x)

tanh(x)

A

B

D

E'

E

B'

D'

C

C'

Fig. 2 1()h x versus tanh()x function .

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

6

h
2
(x)

tanh-1(x)

E

B

A

C

D

E'

D'

C'
B'

Fig. 3 2 ()h x versus 1tanh ()x

 function .

2

7 0.999998

833.3333 826.1667 0.999998 0.9951

19.0840 15.9885 0.9951 0.9217

3.1056 1.2621 0.9217 0.6640

() 1.2048 0.6640 0.6640

3.1056 1.2621 0.6640 0.9217

19.0840 15.988

x

x x

x x

x x

h x x x

x x

x

  

     

     

     

     

   

  5 0.9217 0.9951

833.3333 826.1667 0.9951 0.999998

7 0.999998

x

x x

x












 
    
  

 (7)

Each line in the polyline approximation function 2 ()h x can be expressed as:

2 2 2 2() ()* () 1,...,h x K j x b j j M    (8)

where 2 {0,833.3333,19.0840,3.1056,1.2048,3.1056,19.0840,833.3333,0}K  ,

International Core Journal of Engineering Vol.4 No.11 2018 ISSN: 2414-1895

95

2 { 7,826.1667,15.9885,1.2621,0, 1.2621, 15.9885, 826.1667,7}b      ,
2 9M  ,

2 ()K j is the slope

of the straight line, x is the log likelihood ratio values of the channel,
2 ()b j is a constant,

2M is the

number of piecewise functions. In addition, let

2 { , 0.999998, 0.9951, 0.9217, 0.6640,0.6640,0.9217,0.9951,0.999998, }X        ,

2X represents the set of interval turning points.

From formula (5) and (7), it can be seen that the segment polyline functions
1()h x and

2 ()h x of

tanh()x and 1tanh ()x  do not involve logarithmic and exponential operations and only involve

addition and multiplication operations. The segment polyline function stores the value of tanh()x and
1tanh ()x  by calculating the value of any point on the segment by storing the coordinate of the turning

point, the slope and intercept of each segment, and applying coefficient multiplication and addition.

3.2 The Implementation Structure Of Polyline Approximation Function

The polyline approximation function is the main implementation elements of the f function node

processing elements.

The implementation structure of 1()h x is shown in Fig.4. It includes an interval detection circuit, a

parameter memory, a receive buffer, an adder, and a multiplier. The parameters of 1()h x are 1 1 1, ,K b X .

A set 1X of interval turning points is stored in the RAM of the interval detection circuit. The

coefficients 1()K j and constant 1()b j of each segment are stored in the parameter memory, and

(,)  is divided into 9 intervals according to the set 1X , where 1 1 1((), (1)], 1,...,8x X i X i i   is

the i interval, ((9), (10))X X is the 9th interval.The input value x is compared with the value in the

set 1X one by one to determine the corresponding interval i . The corresponding 1()K i and 1()b i are

taken out in the parameter memory. Then 1()K i is multiplied by x in the data buffer and then added to

1()b i to get the output value.

The implementation steps are:

a) The input value x is simultaneously sent to the receiving buffer and the interval detection circuit,

and is compared with the values in the set 1X one by one in the interval detection circuit. If

1 1((), (1)]x X i X i  , 11,...,i M , then x belongs to the interval i . If 1 1((), (1)]x X i X i  ,

11,...,i M , it is judged whether or not 1 1(1)x X is established. If it is true , then let 1() 1h x   ,

otherwise, let 1() 1h x  .

b) According to the value of i , take the values of 1()K i and 1()b i in the parameter storage element;

c) Multiply 1()K i and x in the receiving buffer and add it to 1()b i to get the output value 1()h x .

The 1()h x is computed as shown in algorithm 1.

Interval

detection circuit

Parameter

memory

Receive buffer

i

b1(i)K1(i)

h1(x)x

Fig. 4 The implementation structure of 1()h x .

International Core Journal of Engineering Vol.4 No.11 2018 ISSN: 2414-1895

96

Algorithm 1:

 input : x

 output :
1()h x

1 for 1i  to 7 do

2 if
1 1() (1)X i x X i   then

3
1 1 1 1() () () ()h x K i X i b i  

4 elseif

5
1(1)x X

6
1() 1h x  

7 else

8
1() 1h x 

9 end

10 end

The realization structure of the polyline approximation function 2 ()h x is the same as 1()h x .The

implementation steps are:

a) The input value x is simultaneously sent to the receiving buffer and the interval detection circuit,

and is compared with the values in the set 2X one by one in the interval detection circuit. If

2 2((), (1)]x X j X j  , 21,...,j M ,then x belongs to the interval j . If 2 2((), (1)]x X j X j  ,

21,...,j M , it is judged whether or not 2 (1)x X is established. If it is true , then let 2() 7h x   ,

otherwise, let 2() 7h x  .

b) According to the value of j , take the values of 2 ()K j and 2 ()b j in the parameter storage element;

c) Multiply 2 ()K j and x in the receiving buffer and add it to 2 ()b j to get the output value 2 ()h x .

The 2 ()h x is computed as shown in algorithm 2.

Algorithm 2:

 input : x

 output : 2 ()h x

1 for 1j  to 7 do

2 if 2 2() (1)X j x X j   then

3 2 2 2 2() () () ()h x K j X j b j  

4 elseif

5 2 (1)x X

6 2() 7h x  

7 else

8 2() 7h x 

9 end

10 end

International Core Journal of Engineering Vol.4 No.11 2018 ISSN: 2414-1895

97

When
1,l iLL 

 and
1, 2ll i

LL
 

 are known, 1,

1()
2

l iLL
h

 and
1, 2

1()
2

ll i
LL

h
 

 are first determined according to

the function
1()h x , and then the two are multiplied to obtain the parameters of the function

2 ()h x .

Finally, the result obtained by using the f function is
1, 1, 2

, 2 1 12 (()* ())
2 2

ll i l i

l i

LLLL
LL h h h

  
 .

3.3 The Implementation Of f Function

The implementation of f function is shown in Fig.5, including LLR memory, implementation

elements of
1()h x and

2 ()h x , and some multipliers.

The specific implementation steps of the f function are:

a) Read two log likelihood ratios
1,l iLL 

 and
1, 2ll i

LL
 

 from LLR memory and multiply these two

values by 1/2, respectively;

b) The two values obtained in step a) are send to the
1()h x implementation element of Fig.5, and the

values of
1,

tanh()
2

l iLL 
 and

1, 2
tanh()

2

ll i
LL

 
 are obtained, then multiply these two values;

c) Send the value obtained in step b) to the implementation element of 2 ()h x , and then calculate the

value of 1tanh ()x . Multiply this value by 2 to obtain the value of
,l iLL .

LLR

RAM

ilLL ,1

lil
LL

2,1  Implementation

element of h1(x) 2

1/2

1/2)
2

tanh(
,1 ilLL 

)
2

tanh(
2,1 lil

LL


)(tanh 1 x

ilLL ,

Implementation

element of h1(x) Implementation

element of h2(x)

Fig. 5 The implementation structure of f function.

3.4 The Implementation Of g Function

The implementation of g function is shown in Fig.6. It requires an LLR memory, an partial sum

register, some adders and some multipliers. The LLR memory stores the log-likelihood ratio values,

and the partial sum register stores the partial sum ŝ . The implementation of partial sum reference [3].

The implementation steps of the g function are:

a) Read two log likelihood ratios values
1, 2ll i

LL
 

 and
1,l iLL 

 from LLR memory.

b) Select the desired partial sum ŝ from the partial registers.

c) Multiply the partial sum by -2 and add the result to 1, which is to calculate the value of
ˆ

(1)s .

d) Multiply the result obtained in step c) by
1, 2ll i

LL
 

 and add it to
1,l iLL 

 to obtain the value of
,l iLL .

LLR RAM

Partial sum

register
ŝ

lil
LL

2,1 

ilLL ,1

ilLL ,

-2 1

Fig. 6 The implementation structure of g function.

International Core Journal of Engineering Vol.4 No.11 2018 ISSN: 2414-1895

98

4. Simulation Results

Fig.7 shows the simulation performance curves obtained under the sum-product algorithm (SPA) and

polyline approximation algorithm (PAA) for the polar codes with the code lengths of 64N  and

32K  under the AWGN channel. It can be seen from Fig.7 that the proposed polyline approximation

algorithm has the same or similar BER or frame error rate (FER) performance as the sum-product

algorithm.

0 1 2 3 4 5 6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0

B
E

R
 /
 F

E
R

SPA,FER,N=64,K=32

PAA,FER,N=64,K=32

SPA,BER,N=64,K=32

PAA,BER,N=64,K=32

Fig. 7. BER/FER performance of the sum-product algorithm and polyline approximation algorithm

for an (64,32) polar code.

5. Complexity analysis

In the decoding stage of the polar code,when the variance obtained by comparing the polyline

approximation algorithm with the original SC algorithm is equal to the variance obtained by comparing

the look-up table method with the original SC algorithm, the polyline approximation algorithm only

use 5 comparison operations, 1 multiplication, and 1 addition, however, if the hyperbolic tangent

function (inverse hyperbolic tangent function) is performed using the lookup table method, the

quantization interval is 0.007, requiring about 2,000 comparison operations. Table I shows a

comparison between the proposed method with the SC decoder when 8N  . Therefore, using the

polyline approximation algorithm proposed in this paper greatly improves the decoding speed.

Table 1 Complexity Comparison Between Sc and Polyline Approximation Algorithm Methods When
8N .

decoding algorithm addition operations
multiplication

operations
comparison operations

Quantized hyperbolic

tangent function
0 0 2000

Quantized inverse

hyperbolic tangent function
0 0 2000

)(1 xh 1 1 5

)(2 xh 1 1 5

6. Conclusion

In this paper, a polyline tangent function (and its inverse function) is proposed to approximate the

polyline tangent function. The hyperbolic tangent function and its inverse function are simplified as a

7-segment polyline function. Simulation results show that the proposed algorithm has the same or

International Core Journal of Engineering Vol.4 No.11 2018 ISSN: 2414-1895

99

similar BER performance as the original algorithm for 64, 32N K  polar codes, but it increases the

decoding speed by approximately two times.

References

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes for

symmetric binary-input memoryless channels,” IEEE Trans. Inform. Theory, vol. 55, pp.

3051-3073, July 2009.

[2] S. Papaharalabos, P. Sweeney, B.G. Evans, “Modified sum-product algorithms for decoding

low-density parity-check codes,”. IET Commun., 2007, 1, (3), pp. 294-300.

[3] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-cancellation

decoder for polar codes,” IEEE Trans. Signal Process., vol. 61, no. 2, pp. 289-299, Jan. 2013.

[4] [4] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures for successive

cancellation decoding of polar codes,” in IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), May 2011, pp. 1665–1668.

[5] M.P.C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of

low-density parity check codes based on belief propagation,” IEEE Trans. on Comm., vol. 47, no.

5, pp. 673 –680, May. 1999.

[6] Papaharalabos, S., Sweeney, P., Evans, B.G., Albertazzi, G., Vanelli-Coralli, A., and Corazza,

G.E.:“Performance evaluation of a modified sum-product decoding algorithm for LDPC codes,”.

Proc.2nd Int. Symp. Wireless Commun. Systems (ISWCS), Siena, Italy, September 2005, pp.

800–804.

[7] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-cancellation decoder for

polar codes,” IEEE Commun. Lett., vol. 15, no. 12, pp. 1378-1380, Dec. 2011.

[8] K. Niu and K. Chen, “CRC-Aided decoding of polar codes,” IEEE communications letters, vol.

16, no. 10, pp. 1668-1671, Oct. 2012.

[9] G. Sarkis, P. Giard, A. Vardy, C. Thibeault and W. J. Gross, “Fast polar decoders: Algorithm and

implementation,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 946-957,

May 2014.

[10] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “LLR-based successive cancellation

list decoding of polar codes,” IEEE Trans. Signal Process., vol. 63, no. 19, pp. 5165-5179, Oct

2015.

[11] I. Tal and A. Vardy , “List decoding of polar codes,” IEEE Transactions on Information Theory,

vol. 61, no. 5, pp. 2213-2226, May 2015.

[12] A. Pamuk, “An FPGA implementation architecture for decoding of polar codes,” in International

Symposium on Wireless Communication Systems (ISWCS), Nov. 2011, pp. 437-441.

[13] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures for successive cancellation

decoding of polar codes,” in Proc. IEEE Conf. Int. Acoust., Speech, Signal Process. (ICASSP),

2011, pp. 1665-1668.

[14] C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J. Gross, “Hardware

implementation of successive-cancellation decoders for polar codes,” Journal of Signal

Processing Systems , vol. 69, no. 3, pp. 305-315, Dec. 2012.

[15] Y. Fan and C.-Y. Tsui, “An efficient partial-sum network architecture for semi-parallel polar

codes decoder implementation,” IEEE Transactions on Signal Processing, vol. 62, no. 12, pp.

3165–3179, Jun. 2014.

