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Abstract 

The successive cancellation (SC) decoding method for polar codes under additive white 
Gaussian noise (AWGN) channels is performed in the log-likelihood ratio domain. The 
function   uses a sum-product algorithm based on hyperbolic tangent rules. Hyperbolic 
tangent requires a large number of multiplication and exponentiation operations, and the 
decoder has a high complexity. In this paper, a polyline approximation algorithm is 
proposed to approximate the hyperbolic tangent function (and its inverse function). The 
hyperbolic tangent function and its inverse function are simplified to a 9-segment polyline 
function. Simulation results show that for the polar code of   the Bit Error Rate (BER) 
obtained by the proposed algorithm is basically the same as the original algorithm, but the 
decoding speed is increased by approximately twice. 
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1. Introduction 

Arıkan proposed the polar code based on the concept of channel polarization [1]. The polar code is the 

first channel coding method that is rigorously proved to be capable of achieving channel capacity in a 

binary symmetric discrete memoryless channel (B-DMC) and has clear and simple coding and 

decoding algorithms. 

Under B-DMC, the SC decoding algorithm for polar codes has high reliability. Therefore, the 

sum-product algorithm based on the hyperbolic tangent rule is used in the log likelihood ratio (LLR) 

domain in general applications. However, when decoding, the sum-product algorithm involves the 

hyperbolic tangent function and its inverse function calculation, and the computational complexity is 

high. For medium and long codewords, the sum-product algorithm is difficult to guarantee real-time 

performance. In the case of guaranteeing certain accuracy, decoding requires a lot of hardware 

resources. 

Many scholars have studied the sum-product algorithm [2-4,6]. C.Leroux approximates the 

sum-product algorithm to the min-sum (MS) algorithm and applies it to polar codes decoding [3-4]. 

He also gives the structure diagram of the sign and magnitude processing elements, and the BER 

performance curve under the MS algorithm. The BER performance obtained by the minimum sum 

algorithm is the same as or similar to the sum-product algorithm [3]. In addition, the implementation of 

the Low Density Parity Check Code (LDPC) decoder also uses the MS algorithm [5]. S.Papaharalabos 

modified the sum-product algorithm for the LDPC code to a piecewise polyline function, and 

presented the performance curve of the BER under the sum-product algorithm and the piecewise 

polyline function algorithm. The simulation results showed that the performance of the BER obtained 

by the segment polyline algorithm is better than the sum-product algorithm [2,6]. Other decoding 

algorithms for polar codes are given in [7-11], and the hardware implementation architectures for polar 

codes decoding are given in [12-15]. 
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Based on the literature [2,3], this paper applies the segment polyline function algorithm in LDPC code 

to the polar code decoding algorithm, and gives the BER and frame error rate (FER) performance 

curves. The advantage of using the segment polyline function algorithm is that the linear operation is 

used instead of the nonlinear operation in the sum-product algorithm, which simplifies the calculation 

and facilitates the software implementation. The obtained BER performance is basically the same as 

the BER performance obtained by the sum-product algorithm. 

The rest of the paper is organized as follows. Section 2 introduces polar codes and SC decoding 

processs. Section 3 describes the segment polyline algorithm and its implementation structure. 

Simulation results are presented and discussed in Section 4. Section 5 gives a simple analysis of 

complexity. Finally, conclusions are drawn in Section 6.  

2. Polar Codes 

2.1 Polar Code Encoding 

A polar code ( , )N K  is a linear block code of length 2nN   and rate /R K N  constructed. The 

recursive concatenation process can be represented by a modulo-2 matrix multiplication as 

 
nx uF                                                              (1)  

Where 0 1 1{ , , , }Nu u u u  is the input vector, 0 1 1{ , , , }Nx x x x  is the coded vector, and the 

generator matrix n
F  is the n-th Kronecker product of the polarizing matrix 

1 0

1 1

 
  
 

F . The input 

vector u  is composed of N bits, K  of which carry information and are assigned to the K  most 

reliable bit channels. The remaining N K  bits of u  are set to a predefined value (typically 0) known 

by the decoder. They are thus known as frozen bits, and their set is identified as . Vector x  is 

transmitted through the channel, and the decoder receives the vector 0 1 1{ , , , }Ny y y y .  

2.2 SC Decoding in LLR domain 

As shown in [3], the SC decoding algorithm successively evaluates the LLR of each bit ˆ
iu . Arıkan 

showed that these LLR computations can be efficiently performed in a recursive manner by using a 

data flow graph which resembles the structure of a fast Fourier transform. That structure, shown in 

Fig.1, is named a butterfly based decoder. As shown in Fig.1, in the LLR domain, messages passed in 

the decoder are LLR values denoted as 
,l iLL , where l  and i  correspond to the graph stage index and 

row index, respectively. Thus, the function f  and g  nodes in the decoder graph calculate the 

messages using the following two functions: 

1( , ) 2 tanh (tanh( ) tanh( ))
2 2

a b
f a b

 
                                       (2) 

ˆˆ( , , ) ( 1)s

g a b a bs                                                  (3) 

 where for the f  function a  denotes 
1,l iLL 

, b  denotes 
1, 2ll i

LL
 

,for the g  function a  denotes 

1, 2ll i
LL

 
, b  denotes 

1,l iLL 
, ŝ  denotes 

, 2
ˆ ll i
s


, 0 l n  , 0 i N  . 

In Fig.1, 3

0y  is the received signal of the channel after Binary Phase Shift Keying (BPSK) modulation, 

and the log-likelihood ratio 
2,iLL  of the channel is obtained after initialization. The SC decoder 

calculates 1,0LL , 1,1LL  by two f  functions according to the value of 2,iLL , and then use 1,0LL , 1,1LL  

calculates 0,0LL  through a g  function. When 0,0 0LL  , 0û  is judged as 0. When 0,0 0LL  , 0û  is 

judged as 1, and at this time, the first element to be judged is activated (the red line in Fig.1 represents 

the decoding process of 0û ), and pass the decision result to the element to be judged later. Then the SC 
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decoder calculates 
0,1LL  by one g  function according to the value of 

1,0LL , 
1,1LL , when calculating 

the g  function, we need to use the part sum 
0,0ŝ , 

0,0 0
ˆ ˆs u . When 

0,1 0LL  , 
1û  is judged as 0. When 

0,1 0LL  , 
1û  is judged as 1, and at this time, the second element to be judged is activated, and pass the 

decision result to the element to be judged later. By analogy, the decision elements are sequentially 

activated in the order of 1 to N , and the source bits are sequentially decoded. 
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Fig. 1  Butterfly-based SC decoder with 4N  . 

Given a received vector y  corresponding to a transmitted codeword x , the SC decoder successively 

estimates the transmitted bits 0u  to 1Nu  . The first step is to decode 0u , the second step is to decode 1u , 

and the i  step is to decode 1iu  . At step i , if i  is not in the frozen set, the SC decoder estimates ˆ
iu  

such that: 

1

0

1

0

ˆPr( , | 0)
0, log( ) 0

ˆ ˆPr( , | 1)

1,

i

i

i

i i

y u u
if

u y u u

otherwise





 


 



                                            (4)

 

where 1

0
ˆPr( , | )i

iy u u a   is the probability that y  was received and the previously decoded bits are 
1

0
ˆ iu  , given the currently decoded bit is a , where {0,1}a . The ratio of probabilities in (2) represents 

the LLR of bit ˆ
iu .  

3. Polyline Approximation Algorithm 

3.1 Polyline Approximation Algorithm Principle 

It can be seen from formula (2) , the function f  uses a sum-product algorithm based on hyperbolic 

tangent rules, but hyperbolic tangent requires a large number of multiplication and exponentiation 

operations, and the decoder has a high complexity. In this paper, a polyline approximation algorithm is 

proposed to approximate the hyperbolic tangent function (and its inverse function). 

The polyline approximation algorithm converts nonlinear functions into piecewise linear functions. 

When the polyline algorithm is implemented, the structure is simple, and the continuous function is 

estimated with a small number of parameters. The algorithm has been widely used in the fields of 

modeling, analysis and estimation of a large number of nonlinear dynamic systems. 
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When implementing a hyperbolic tangent function with an FPGA, if a shift-and-add method is used 

instead of a multiplication operation, more clock cycles will be consumed and the decoding delay will 

increase. If the look-up table method is used, the value of the hyperbolic tangent function needs to be 

stored in the ROM first, and then the input is converted into the look-up table address to obtain the 

approximate value of the hyperbolic tangent function. However, the increase in the precision will 

increase the size of the look-up table exponentially. Therefore, the table lookup method is only 

applicable to applications with low precision requirements. If high-order polynomial approximations 

are used, more adders and multipliers will be used, consuming too much hardware resources. In this 

paper, the polyline approximation algorithm is used. This algorithm selects a part of the hyperbolic 

tangent function and its inverse function to segment it, and the expression of each polyline function is 

obtained according to the minimum mean square error. This method achieves a good balance between 

speed, resources, and accuracy. 

The hyperbolic tangent function is an odd function about the symmetry of the origin, the definition 

domain is ( , )  ,the value range is (-1,1). In this paper, the hyperbolic tangent function is 

approximated, and a 9-segment piecewise polyline function is obtained. Its expression is formula (5). 

Fig.2 shows the comparison of the curves of 1( )h x  and tanh( )x  functions. It can be seen from Fig.2 

that the curves of 1( )h x  and tanh( )x  functions are very close, so using 1( )h x  instead of tanh( )x  

function ,the hardware implementation is simple and does not affect the decoding error rate. 

1
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                                                      (5)

 

Each line in the polyline approximation function 1( )h x  can be expressed as: 

1 1 1 1( ) ( )* ( ) 1,...,h x K i x b i i M                                                      (6) 

where 1 {0,0.0012,0.0524,0.322,0.83,0.322,0.0524,0.0012,0}K  , 

1 { 1, 0.9914, 0.8378, 0.4064,0,0.4064,0.8378,0.9914,1}b      ,  1 9M  , 1( )K i  is the slope of the 

straight line, x  is the log likelihood ratio values of the channel, 1( )b i  is a constant, 1M  is the number 

of piecewise functions. In addition, let 1 { , 7.0, 3.0, 1.6, 0.8,0.8,1.6,3.0,7.0, }X        , 1X  

represents the set of interval turning points. 

The inverse hyperbolic tangent function is also an odd function about the symmetry of the origin, the 

definition domain is (-1,1), the value range is ( , )  . In this paper, the inverse hyperbolic tangent 

function is approximated, and obtained a 9-segment piecewise polyline function 2 ( )h x . Its expression 

is formula (7). Fig.3 shows the comparison of the curves of 2 ( )h x  and 
1tanh ( )x

 functions. It can be 

seen from Fig.3 that the curves of 2 ( )h x  and 
1tanh ( )x

 functions are very close, so using 2 ( )h x  

instead of 
1tanh ( )x

 function ,the hardware implementation is simple and does not affect the decoding 

error rate.  
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Fig. 2  1( )h x  versus tanh( )x  function .  
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Fig. 3  2 ( )h x versus 1tanh ( )x

 function .  
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                                 (7) 

Each line in the polyline approximation function 2 ( )h x  can be expressed as: 

2 2 2 2( ) ( )* ( ) 1,...,h x K j x b j j M                                                       (8) 

where 2 {0,833.3333,19.0840,3.1056,1.2048,3.1056,19.0840,833.3333,0}K  ,  
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2 { 7,826.1667,15.9885,1.2621,0, 1.2621, 15.9885, 826.1667,7}b      , 
2 9M  , 

2 ( )K j  is the slope 

of the straight line, x  is the log likelihood ratio values of the channel, 
2 ( )b j  is a constant, 

2M  is the 

number of piecewise functions. In addition, let  

2 { , 0.999998, 0.9951, 0.9217, 0.6640,0.6640,0.9217,0.9951,0.999998, }X        ,  

2X  represents the set of interval turning points. 

From formula (5) and (7), it can be seen that the segment polyline functions 
1( )h x  and 

2 ( )h x  of 

tanh( )x  and 1tanh ( )x   do not involve logarithmic and exponential operations and only involve 

addition and multiplication operations. The segment polyline function stores the value of tanh( )x  and 
1tanh ( )x   by calculating the value of any point on the segment by storing the coordinate of the turning 

point, the slope and intercept of each segment, and applying coefficient multiplication and addition. 

3.2 The Implementation Structure Of Polyline Approximation  Function 

The polyline approximation function is the main implementation elements of the f  function node 

processing elements.  

The implementation structure of 1( )h x  is shown in Fig.4. It includes an interval detection circuit, a 

parameter memory, a receive buffer, an adder, and a multiplier. The parameters of 1( )h x  are 1 1 1, ,K b X . 

A set 1X  of interval turning points is stored in the RAM of the interval detection circuit. The 

coefficients 1( )K j  and constant 1( )b j  of each segment are stored in the parameter memory, and 

( , )   is divided into 9 intervals according to the set 1X , where 1 1 1( ( ), ( 1)], 1,...,8x X i X i i    is 

the i  interval, ( (9), (10))X X  is the 9th interval.The input value x  is compared with the value in the 

set 1X  one by one to determine the corresponding interval i . The corresponding 1( )K i  and 1( )b i  are 

taken out in the parameter memory. Then 1( )K i  is multiplied by x  in the data buffer and then added to 

1( )b i  to get the output value.  

The implementation steps are: 

a)  The input value x  is simultaneously sent to the receiving buffer and the interval detection circuit, 

and is compared with the values in the set 1X  one by one in the interval detection circuit. If 

1 1( ( ), ( 1)]x X i X i  , 11,...,i M , then x  belongs to the interval i . If 1 1( ( ), ( 1)]x X i X i  , 

11,...,i M  , it is judged whether or not 1 1(1)x X  is established. If it is true , then let 1( ) 1h x   , 

otherwise, let 1( ) 1h x  . 

b)  According to the value of  i , take the values of 1( )K i  and 1( )b i  in the parameter storage element; 

c)  Multiply 1( )K i  and x  in the receiving buffer and add it to 1( )b i  to get the output value 1( )h x . 

The 1( )h x  is computed as shown in algorithm 1. 

Interval 

detection circuit

Parameter 

memory

Receive buffer

i

b1(i)K1(i)

h1(x)x

 

Fig. 4  The implementation structure of 1( )h x .  
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Algorithm 1: 

  input : x  

  output : 
1( )h x  

1 for 1i   to 7  do 

2    if 
1 1( ) ( 1)X i x X i    then 

3       
1 1 1 1( ) ( ) ( ) ( )h x K i X i b i    

4    elseif 

5       
1(1)x X  

6       
1( ) 1h x    

7    else 

8       
1( ) 1h x   

9    end 

10 end 

 
The realization structure of the polyline approximation function 2 ( )h x  is the same as 1( )h x .The 

implementation steps are: 

a)  The input value x  is simultaneously sent to the receiving buffer and the interval detection circuit, 

and is compared with the values in the set 2X one by one in the interval detection circuit. If 

2 2( ( ), ( 1)]x X j X j  , 21,...,j M  ,then x  belongs to the interval j . If 2 2( ( ), ( 1)]x X j X j  , 

21,...,j M  , it is judged whether or not 2 (1)x X  is established. If it is true , then let 2( ) 7h x   , 

otherwise, let 2( ) 7h x  . 

b)  According to the value of j , take the values of 2 ( )K j  and 2 ( )b j  in the parameter storage element; 

c)  Multiply 2 ( )K j  and x  in the receiving buffer and add it to 2 ( )b j  to get the output value 2 ( )h x . 

The 2 ( )h x  is computed as shown in algorithm 2. 

Algorithm 2: 

  input : x  

  output : 2 ( )h x  

1 for 1j   to 7  do 

2    if 2 2( ) ( 1)X j x X j    then 

3       2 2 2 2( ) ( ) ( ) ( )h x K j X j b j    

4    elseif 

5       2 (1)x X  

6       2( ) 7h x    

7    else 

8       2( ) 7h x   

9    end 

10 end 
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When 
1,l iLL 

 and 
1, 2ll i

LL
 

 are known, 1,

1( )
2

l iLL
h

  and 
1, 2

1( )
2

ll i
LL

h
 

 are first determined according to 

the function 
1( )h x , and then the two are multiplied to obtain the parameters of the function 

2 ( )h x . 

Finally, the result obtained by using the f  function is 
1, 1, 2

, 2 1 12 ( ( )* ( ))
2 2

ll i l i

l i

LLLL
LL h h h

  
 . 

3.3 The Implementation Of f  Function 

The implementation of f  function is shown in Fig.5, including LLR memory, implementation 

elements of 
1( )h x  and 

2 ( )h x , and some multipliers. 

The specific implementation steps of the f  function are: 

a)  Read two log likelihood ratios 
1,l iLL 

 and 
1, 2ll i

LL
 

 from LLR memory and multiply these two 

values by 1/2, respectively; 

b)  The two values obtained in step a) are send to the 
1( )h x  implementation element of Fig.5, and the 

values of 
1,

tanh( )
2

l iLL 
 and 

1, 2
tanh( )

2

ll i
LL

 
 are obtained, then multiply these two values; 

c)  Send the value obtained in step b) to the implementation element of 2 ( )h x , and then calculate the 

value of 1tanh ( )x . Multiply this value by 2 to obtain the value of 
,l iLL . 

LLR  

RAM

ilLL ,1

lil
LL

2,1  Implementation 

element of h1(x) 2

1/2

1/2 )
2

tanh(
,1 ilLL 

)
2

tanh(
2,1 lil

LL


)(tanh 1 x

ilLL ,

Implementation 

element of h1(x) Implementation 

element of h2(x)

 
Fig. 5  The implementation structure of f  function. 

3.4 The Implementation Of g  Function 

The implementation of g  function is shown in Fig.6. It requires an LLR memory, an partial sum 

register, some adders and some multipliers. The LLR memory stores the log-likelihood ratio values, 

and the partial sum register stores the partial sum ŝ . The implementation of partial sum reference [3]. 

The implementation steps of the g  function are: 

a)  Read two log likelihood ratios values 
1, 2ll i

LL
 

 and 
1,l iLL 

 from LLR memory. 

b)  Select the desired partial sum ŝ  from the partial registers. 

c)  Multiply the partial sum by -2 and add the result to 1, which is to calculate the value of 
ˆ

( 1)s . 

d)  Multiply the result obtained in step c) by 
1, 2ll i

LL
 

 and add it to 
1,l iLL 

 to obtain the value of 
,l iLL . 

LLR   RAM

Partial sum 

register
ŝ

lil
LL

2,1 

ilLL ,1

ilLL ,

-2 1

 
Fig. 6  The implementation structure of g  function. 
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4. Simulation Results 

Fig.7 shows the simulation performance curves obtained under the sum-product algorithm (SPA) and 

polyline approximation algorithm (PAA) for the polar codes with the code lengths of 64N   and 

32K   under the AWGN channel. It can be seen from Fig.7 that the proposed polyline approximation 

algorithm has the same or similar BER or frame error rate (FER) performance as the sum-product 

algorithm. 
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Fig. 7.  BER/FER performance of the sum-product algorithm and polyline approximation algorithm 

for an (64,32) polar code. 

5. Complexity analysis 

In the decoding stage of the polar code,when the variance obtained by comparing the polyline 

approximation algorithm with the original SC algorithm is equal to the variance obtained by comparing 

the look-up table method with the original SC algorithm, the polyline approximation algorithm only 

use 5 comparison operations, 1 multiplication, and 1 addition, however, if the hyperbolic tangent 

function (inverse hyperbolic tangent function) is performed using the lookup table method, the 

quantization interval is 0.007, requiring about 2,000 comparison operations. Table I shows a 

comparison between the proposed method with the SC decoder when 8N  . Therefore, using the 

polyline approximation algorithm proposed in this paper greatly improves the decoding speed. 

Table 1 Complexity Comparison Between Sc and Polyline Approximation Algorithm Methods When 
8N . 

decoding algorithm addition operations 
multiplication 

operations 
comparison operations 

Quantized hyperbolic 

tangent function 
0 0 2000 

Quantized inverse 

hyperbolic tangent function 
0 0 2000 

)(1 xh  1 1 5 

)(2 xh  1 1 5 

6. Conclusion 

In this paper, a polyline tangent function (and its inverse function) is proposed to approximate the 

polyline tangent function. The hyperbolic tangent function and its inverse function are simplified as a 

7-segment polyline function. Simulation results show that the proposed algorithm has the same or 
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similar BER performance as the original algorithm for 64, 32N K   polar codes, but it increases the 

decoding speed by approximately two times. 
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