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Abstract 
In this paper, an improved Monte Carlo EM (MCEM) acceleration algorithm is proposed, 
aiming at solving the problems of slow convergence and difficult integral calculation of 
the traditional MCEM algorithm when dealing with complex models. The article first 
reviews the basic concepts and application background of EM algorithms and MCEM 
algorithms, and then points out the limitations of MCEM algorithms with high-
dimensional data and complex models. To overcome these challenges, the authors 
introduce a new algorithm that approximates the solution of N-R step integrals by means 
of a Monte Carlo simulation method, which improves the convergence speed of the 
algorithm and maintains the quadratic convergence property. Specifically, the improved 
MCEM acceleration algorithm consists of the following key steps: random sampling in 
the E1 step, computation of the expectation in the E2 step, maximization of the objective 
function in the M step, and approximation of the integral using the Monte Carlo method 
in the improved N-R step. Through numerical examples, the authors demonstrate the 
advantages of the improved algorithm over the original MCEM algorithm and the MCEM 
accelerated algorithm in terms of accuracy of parameter estimation and speed of 
convergence. In addition, the article discusses the effect of random number selection on 
the performance of the algorithm and provides a method for choosing the appropriate 
number of random numbers. In conclusion, the improved MCEM acceleration algorithm 
effectively improves the computational efficiency and accuracy of the results when 
dealing with complex data models, which has important practical application value for 
statistical analysis in the era of big data. 
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1. Introduction 

The EM algorithm is a commonly used algorithm for dealing with missing data, initially proposed by 
Dempster et al. (1977), consisting of an expectation step (E step) and a maximization step (M step) 

[1]. In practical applications, it is sometimes difficult, or even impossible, to obtain the explicit 
expression of the E step expectation in the EM algorithm. To solve this problem, Louis (1982) 
proposed the use of Monte Carlo simulation to complete the solution of the E step, leading to the 
development of the generalized EM algorithm known as the MCEM algorithm [2]. The convergence 
speed of the EM algorithm is inherently controlled by the reciprocal of the missing data information 
and is generally linear. With high rates of data missing, the EM algorithm converges more slowly, 
and the MCEM algorithm, which relies on Monte Carlo simulation to solve for the expectation, 
converges even more slowly compared to the EM algorithm. To address the slow convergence speed 
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of the MCEM algorithm, Luo ji (2008) proposed an MCEM acceleration algorithm that combines the 
MCEM algorithm with the N-R algorithm, giving the MCEM algorithm a quadratic convergence 
speed on top of its original linear convergence speed, effectively increasing the operational speed of 
obtaining results with the MCEM algorithm [3]. In the era of big data, the complexity and redundancy 
of high-dimensional data have a certain impact on the convergence speed of the MCEM acceleration 
algorithm, and the increased complexity of the model also poses a challenge to the calculation of the 
N-R step integral in the MCEM acceleration algorithm. Therefore, based on previous work, this paper 
proposes an improvement to the difficult-to-solve N-R step integral using the Monte Carlo simulation 
method to find its integral approximation. By ensuring the quadratic convergence speed of the MCEM 
acceleration algorithm, the difficulty of solving the N-R step integral in the MCEM acceleration 
algorithm is addressed, further expanding the applicability of the MCEM acceleration algorithm. 

2. The MCEM Algorithm 

The MCEM algorithm is a method that utilizes Monte Carlo simulation to effectively implement the 
integration of the E step in the EM algorithm [4-6], dividing the E step into the following E1 and E2 
steps: 

Step E1: Draw m  random numbers 1 2, , , mZ Z Z  randomly from ( 1)( , )ip Z Y  . 

Step E2: Calculate  ( )

1

1
( , ) log ( , )

m
i

j
j

Q Y p z Y
m

  


  . 

By the law of large numbers, as long as m  is sufficiently large,  ( )( , )iQ Y   and  ( )( , )iQ Y  will be 

very close, thus we can maximize a in the M step. 

3. MCEM Acceleration Algorithm 

As an extension of the EM algorithm, the MCEM algorithm has stronger applicability. However, like 
the EM algorithm, its convergence speed is controlled by the reciprocal of the missing information, 
and with a higher proportion of missing data, the calculations generated by the Monte Carlo 
simulations during expectation estimation cause the MCEM algorithm to converge more slowly than 
the EM algorithm. The N-R algorithm has a quadratic convergence speed near the posterior mode. 
To improve the convergence speed of the MCEM algorithm and avoid slow convergence at high data 
missing rates, Luo J (2008) combined the MCEM algorithm with the N-R algorithm, resulting in the 
MCEM acceleration algorithm that has a quadratic convergence speed. The computational logic of 
the MCEM acceleration algorithm is: first, use the MCEM algorithm to implement the first step of 
iteration to obtain the optimal solution 

( )i

EM , then use the N-R method to correct it, obtaining a new 

optimal solution, denoted as ( 1)i  . At this point, complete the i  step of iteration, and continue 
iterating until the algorithm converges. The specific steps of the MCEM acceleration algorithm are 
as follows: 

Step E1:Draw m  random numbers 1 2, , , mZ Z Z  randomly from ( 1)( , )ip Z Y  . 

Step E2:Calculate. 
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Step M:Let's maximize  ( )( , )iQ Y  ,We get solution 
( )i

EM . 

Step N-R:Let. 
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Where 2 ( ) ( )( , )i mQ X  and ( ) ( )( , )i mQ X   represent the Hesse matrix and gradient of the function 
( )( , )mQ X   at ( )i . 

Thus an iteration is formed: ( ) ( 1)i i   .Iterate through the steps E1, E2, M, and N-R above until 
( 1) ( )i i    or ( 1) ( ) ( ) ( )( , ) ( , )i i i iQ Y Q Y      is sufficiently small.  

4. The Improved MCEM Acceleration Algorithm 

The MCEM acceleration algorithm effectively improves the convergence speed of the algorithm, but 
for more complex models, the integral calculation of the N-R step is too complex, and it is difficult 
to give its explicit expression, similar to the difficulty of obtaining the explicit expression of the E-
step expectation in the EM algorithm. Based on this, this paper proposes an improved MCEM 
acceleration algorithm that combines the Monte Carlo method with the N-R algorithm, providing an 
approximation for equation (1) and solving the difficulty of integral calculation in the N-R step. The 
computational logic of the improved MCEM acceleration algorithm is: while maintaining the 
conditions of the E1 step, E2 step, and M step of the MCEM acceleration algorithm, the N-R step is 
replaced with an improved N-R step. 

Given that when sufficiently large, the following equations (2) and (3) hold: 
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Thus, the N-R step of the MCEM acceleration algorithm can be improved as equation (4): 
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1 2 1( ) ( )i i i
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
                          (4) 

 

According to the law of large numbers, as long as the random number m  is sufficiently large, the 
value of the improved N-R step is very close to that of the N-R step. Therefore, the improved MCEM 
acceleration algorithm can maintain the advantage of quadratic convergence speed while solving the 
problem of difficult N-R step integral calculations in the accelerated algorithm. 
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5. Numerical Simulation 

Suppose there are now 1000 respondents, divided according to gender and color blindness into four 
categories: normal male, color-blind male, normal female, color-blind female [7], i.e., 

 

1 2 3 4( , , , ) (442,38,514,6)Y y y y y  , 

 

According to the genetic model, the unit probability of the data is: 

 

 22 11
, , (1 ), , where 0,1 .

2 2 2 2

     
    
 
 

（ ）

 
 

To estimate parameter  , introduce unobserved data Z , dividing the third unit into two units, then 
the augmented data are as follows: 

 

 1 2 3 4, , , , ,X y y Z y Z y   

 

And the unit probability of the augmented data is: 
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And under the condition of a flat prior, 

 

1 3 2 3 4log ( , ) ( ) log( ) ( 2 ) log(1 )p Y Z y y Z y y y Z          . 

 

Thus, it follows that: 
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Below, we use the improved MCEM acceleration algorithm to estimate the value of  : 

Step E1: Draw m  random numbers 1 2, , , mZ Z Z  randomly from ( ) ( )(514, (2 ))i iB   ,then: 
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Step E2: 
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Below, we set m  =1000, using ( 1) ( ) 410i i     as the convergence criterion, successively using 

the MCEM algorithm, MCEM acceleration algorithm, and the improved MCEM algorithm to find 
the maximum likelihood estimation of parameter  , with the iteration results and the number of 
iterations shown in Table 1. 

 

Table 1. Iteration Results for Parameter Estimation 

 MCEM 
MCEM acceleration 

algorithm 
The improved MCEM acceleration 

algorithm 

 0 0.5000   

0.7271 0.9117 0.8007 0.9125 0.8898 

0.8217 0.9122 0.8580 0.9130 0.9095 

0.8648 0.9124 0.8840 0.9131 0.9125 

0.8865 0.9127 0.8970 0.9130 0.9129 

0.8983 0.9130 0.9040 0.9130 0.9123 

0.9045 0.9133 0.9080  0.9128 

0.9082 0.9130 0.9106  0.9128 

0.9101 0.9129 0.9117   

0.9113 0.9129 0.9122   

iterations 18 14 7 

 

From the results in Table 1, it is easy to see that to estimate the value of parameter   using the 
MCEM algorithm requires 18 iterations, with a relatively slow convergence speed, whereas the 
MCEM acceleration algorithm significantly outperforms the MCEM algorithm in terms of 
convergence speed. The MCEM acceleration algorithm converges after 14 iterations, four less than 
the unaccelerated MCEM algorithm, while the improved MCEM acceleration algorithm only requires 
7 iterations to converge. Its convergence speed is significantly faster than both the MCEM algorithm 
and the MCEM acceleration algorithm, indicating that the improved MCEM acceleration algorithm 
compensates for the convergence speed sacrificed by the MCEM algorithm's use of Monte Carlo 
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simulation in the E step within the improved N-R step. Therefore, the improved MCEM acceleration 
algorithm is superior to the MCEM acceleration algorithm. 

6. Selection of Random Numbers 

In the MCEM algorithm, the selection of random numbers m in step E1 significantly affects the 
stability and convergence of the algorithm's iterative results. Values too small cannot achieve stable 
convergence, and values too large reduce the algorithm's computational efficiency. In the numerical 
simulation example, we select 1000m  ; below, we discuss the reasons for this choice. First, we take 

10,100,1000m   respectively, and using ( 1) ( ) 410i i     as the convergence criterion, we perform 

the MCEM algorithm and plot as follows: 
 

 
Figure 1. The iteration process of the MCEM algorithm with m  ranging from 10 to 1000 

 

From Figure 1, it can be seen that when the random number  is set to 10, the fluctuation of the 
estimated values remains significant after numerous iterations, leading to unstable estimates and poor 
iteration performance; when m  is set to 100, despite a reduction in the fluctuation amplitude after 
several iterations, it requires more than 100 iterations to achieve stable onvergence, resulting in 
average iteration performance; when m  is set to 1000, the estimated values tend to stabilize after a 
few iterations and converge after just over 10 steps. Although selecting a larger random number could 
yield higher precision, it would undoubtedly increase the computation time of the algorithm. 
Therefore, for the numerical simulation case in this paper, choosing a random number m of 1000 is 
appropriate. 

7. Conclusion 

As an extension of the EM algorithm, the MCEM algorithm has broader applicability. However, its 
use of Monte Carlo simulation in the E-step sacrifices the convergence speed of the algorithm, which 
is inherently linear. In response to this, this paper has improved the convergence speed of the MCEM 
algorithm, achieving a square convergence speed and then appropriately amplifying the convergence 
speed once more, resulting in the improved MCEM acceleration algorithm that enhances the iteration 
efficiency of the algorithm. The example calculations demonstrate the superiority of the improved 
MCEM acceleration algorithm. Finally, the paper concludes with an analysis and discussion on the 
method of selecting random numbers in the MCEM algorithm. 
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