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Abstract 
The two-player military chess is a typical zero-sum game with non-complete information, 
which has more pieces, more moves, and will not reduce the number of situation 
branches as the game progresses. Therefore, the basic Monte Carlo Tree Search (MCTS) 
cannot satisfy the high searching demand of military chess. For this reason, this paper 
proposed the UCB&MCTS algorithm based on move evaluation and applies it to the 
automatic move program of military chess, and the experiments prove the feasibility and 
effectiveness of the improved UCB&MCTS algorithm. 
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1. Introduction 

Computer gaming, also known as machine gaming, is one of the most challenging and important 
topics of research in the field of artificial intelligence.In recent years, with the rise of the artificial 
intelligence industry,researchers have set off a boom in the research of computer gaming 
neighborhoods, and have achieved fruitful academic results:In 2016, AlphaZero developed by Google 
Inc. defeated the Go legend Lee Sedol with a score of 4:1. In 2017, after nine months of self-iterative 
training, AlphaZero's chess power was once again substantially improved, and beat the world's best 
Go player Jie Ke with a score of 3:0. Classical computer gaming algorithms include Monte Carlo tree 
search algorithm, Great Minimization search, Q-Learning reinforcement learning algorithm, etc. 
These are effective algorithms for searching for information-complete gaming games (such as Go and 
International Chess). However, two-player military chess is a non-complete information game, which 
cannot see the specific information of the opponent's pieces when the players are playing the game, 
which also adds lots of situations to the search tree of the game, and the ordinary Monte-Carlo tree 
search or minimax algorithm may not be able to adapt to the huge search situation of military chess. 

Monte Carlo Tree Search Algorithm (MCTS) is a classical computer game search algorithm, this 
algorithm proposes four major steps of Selection, Expansion, Simulation and Back Propagation to 
simulate and score the situation according to certain rules and select the step with the highest score 
as the next action step. The highest rated step is chosen as the next action step.In recent years, many 
researchers have also integrated various algorithms with MCTS algorithms,for example,Marc Lanctot 
combined Monte Carlo simulation with Counterfactual Regret Minimization(CFR) algorithms and 
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proposed Outcome-Sampling MCCFR and External-Sampling MCCFR algorithms[1],Richard 
Gibson proposed Aggregate-Sampling MCCFR algorithms[2].which focuses on accessing the set of 
information accessed by the Nash equilibrium strategy,thus improving the efficiency of optimal 
solution retrieval. 

For all chess games, the estimation of the current value of pieces and position is also an important 
factor that affects the computer's decision-making,and there are many examples of value estimation 
of the two-player military flag in previous studies,Wei Zhang[3] performed position evaluation by 
evaluating the value of the pieces as well as the probability of the appearance of the different pieces 
of the other side on the board,and designed the empirical function,the attack function, and the defense 
function to perform and select the behavior of the next move,Kun Meng[4]and others designed a 
position valuation function-pessimistic algorithm to conservatively evaluate the calculation of the 
score of a particular move,and also designed attack and defend functions to perform the selection of 
the next operation,which makes the growth of computer chess power.In this paper, we design a move 
evaluation function,and combine the upper confidence interval formula UCB with MCTS,propose to 
improve the UCB&MCTS algorithm and implement the automatic move program for the military 
chess game, we compare the implemented program with the military chess move program 
implemented by some classical algorithms,and the experiments proved the validity and 
reasonableness of the improved UCB&MCTS algorithm. 

2. Two-player Military Chess Introduction and Definition of Basic Information 
on Military Chess Programs 

2.1 Two-player Military Chess Introduction 

 

Figure 1. Diagram of military chess board 
 

Two-player military chess consists of a board with 12 rows and 5 columns and 25 pieces for each 
side,where each side's 25 pieces consist of one Chief Commander, one Army Commander, one Army 
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Flag, two Division Commanders, two Brigade Commanders, two Regiment Commanders, two 
Battalion Commanders, one Bomb, and three Company Commanders, three Platoon Commanders, 
one Engineer, and three Land Mines. If team A successfully attack the opponent's flag, then team A 
wins. The two-player military chess board is shown in Figure 1. 

According to the official website of China University Computer Gaming Competition, the main rules 
and game flow [5] are as follows: before the game starts, both sides will put their 25 pieces in their 
pawn stations and base camps according to their own layouts, when the game is in progress, one side 
can choose a piece and walk along the solid line or the dotted line of the squares on the way, and if 
there is a piece of the other side in the focus of the walk, then both sides will make a comparison of 
their pieces, if there is a bomb in both sides, then both sides will die together.then the player with the 
higher ranked piece wins and eats the other player's piece. Neither side can attack the other side's 
pieces in the camp(called “行营” in figure 1), both sides' military flags are located in their own base 
camp(called “大本营” in figure 1), when one side's piece reaches the position where the other side's 
flag is located, that side wins. 

Due to the complexity of the rules of military chess, the paper will not spend a great deal of space 
describing all the rules of military chess in detail. What can be noticed is that when team A makes a 
move decision, it does not have full information of the exact distribution of the opponent's pieces, so 
for every attack move, team A has a certain risk: team A's attacking piece will die if it’s rank is lower 
than the opponent's attacked piece. This makes the possibilities of different positions in the game so 
large that there are 7.1*1017 possible complete-information positions at the beginning of the game, 
when both sides are laying out their pieces. At this point the size of the search tree of a complete 
position search algorithm such as the classical Monte Carlo tree search algorithm is unable to return 
all legal moves. To address this problem, we found that the value of searching deeper levels is much 
smaller than searching the current position in detail in the 3-4 layers of the game tree, so we limit the 
upper limit of the game tree extension to 4 layers, and use the UCB formula to search the position 
more accurately, and use the move evaluation function to score the position so as to simulate the best 
moves. 

2.2 Definition of Basic Information about the Military Chess Program 

(1) chess piece definition: 

struct Chess{ 

int id;          //Piece id,shown what kind of piece it is 

int position;     //Piece position on the board 

int level;        //Chess level 

double pro[12];  //Storing the probability distribution of enemy pieces  

}mychess[12],enemychess[12]; 

(2) chess board definition: 

First, each position of the board is numbered, and the position of point {i,j} is numbered as (i-1)*12+j. 

int dist[100][100];//dist[i][j]=1 if the position numbered i,j has an edge, otherwise it will be set infinity. 

3. Algorithm Design 

3.1 Handling of Incomplete Information Situations 

For the case that the player cannot see the distribution of his opponent's pieces in two-player military 
chess game, we first create a probability distribution table of the pieces to record the probability 
information of each opponent's piece in the current position.For each position on the opponent's 
board,we build a probability analysis table,after which we can dynamically update the probability 
table as the position changes and the corresponding information gained from piece attacks.For 
example,the probability table for all the pieces in a base camp position of the enemy is as follows. 
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Table 1. Probability distribution table of chess pieces in the initial situation of enemy base camp 

Flag Bomb Platoon Landmine Battalion Company Others 

0.5 0.15 0.15 0.1 0.05 0.05 0 

 

Due to the special location of the base camp,the pieces that are in the base camp cannot move outward, 
so the probability that one of them is a high-ranking piece can be regarded as 0.Since the rules 
stipulate that the flag must be in one of the two base camps,we can initially stipulate that the 
probability of the flag being in one of the base camps is 0.5,and for the lower-ranking pieces,we can 
set probabilities based on whether they can move or not, and on their relative values setting.For all 
other positions,the probability value of each piece can be set by referring to the rules of two-player 
army chess and the probability analysis method mentioned above.It should be noted that in any 
position, the probability of all pieces must sum to 1. 

In the process of military chess game, it will produce the situation that both sides' pieces attack each 
other, for the result produced after attacking, we can analyze and obtain the relevant information of 
surviving pieces, for example, if our rank 4 piece attacks the opponent's piece A, and as a result, our 
piece dies, we can set all the probabilities that piece A is rank 4 or below to 0. After that, we perform 
the normalization operation, and set the probability of the sum of the probabilities of the pieces of 
piece A to 1 from the new one, assuming that the updated probability distribution of piece A is 
P={p1,p2,p3,...,p12}, so that: 
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After the above operations, the update of the piece probabilities is complete. 

3.2 UCB & MCTS Algorithms 

In the MCTS algorithm,the selection of nodes and the estimation of the situation are the two decisive 
factors in determining the accuracy of the algorithm,we should consider the probability of winning-
times for each possible search node and the number of times the node has been visited when deciding 
which node will be chosen to search next,we need to consider both the nodes with a high probability 
of winning-times,and also the nodes with a small number of searches, to achieve a balance between 
exploration and utilization.The UCB formula[7] successfully balance these two points well,and its 
formula is expressed as follows. 
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In formula (3), wc represents the number of winning-times the current node search, nc represents the 
total number of times the current node is visited, np represents the number of times the current node's 
parent node is visited, and cof is a manually-set coefficient, the former item of the UCB formula 
utilizes the currently available information and calculates the current node's winning-times rate, 
which makes the algorithm biased towards selecting nodes with a higher winning-times rate; and the 
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latter item of the UCB formula takes into account the number of visits of each node's number of visits, 
so that the algorithm is biased towards selecting nodes with fewer visits, and it can be found that 
when the number of visits to a node is 0, the latter term of the UCB is infinite, which indicates that 
the UCB formula prioritizes the unvisited nodes and ensures that every node will be visited. 

In the selection phase of the MCTS algorithm, we need to select a node from the current situation 
downward that needs to be expanded most, if there is a node that has not been visited in the current 
situation, then this node will be selected as the expansion node, if the current situation lead to an end 
of the game(such as successfully arrived at the location where the enemy flag is located),we can 
immediately perform the back propagation operation.Otherwise,all feasible operations of the current 
node have been expanded, at this time we use the UCB formula to select the best expansion node. 

After selecting the best node, the algorithm enters the expansion and simulation session, expanding 
from the selected nodes that have not yet been expanded, and randomly simulating actions to guide 
the end of the current game situation, at this time, perform the backward propagation operation, 
updating the results of this simulation to all the nodes on the path from the root node to the current 
node:The number of visits to all nodes will add one, and if the situation will lead to a victory of the 
side, then all nodes' winning times will add one. 

The four steps of Monte Carlo tree search are depicted in the picture in Figure 2. 

 

 
Figure 2. Illustration of Monte Carlo tree search 

In order to solve the shortcoming that the MCTS algorithm cannot completely traverse the whole 
game tree of military chess, we propose a piece value estimation function to simulate the top ranked 
piece moves from the perspectives of both the value of the piece itself and the danger it can cause, so 
as to search for the optimal move for the current position in a highly efficient way. 

3.3 Piece Move Value Estimation Function 

In order to be able to simulate as many good moves as possible in limited time, we need to estimate 
the value of each move, for the estimation of the value of each move, we evaluate the value of each 
move from two perspectives, the value of the move itself and the threat degree of the move, in the 
study, we consider from two perspectives, the rank of the move and the impact of losing the move on 
the position, and we design and specify each kind of value of a piece type, as shown in the following 
table. 
 

Table 2. Comparison table of pieces name and piece value 

Name Flag Chief Army Division Brigade Regiment  battalion company platoon sapper landmine Bomb 

Value 5000 100 87 65 40 31 19 8 3 44 39 77 
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For the estimation of the value of a move, we should not only see the gain of the current attack move, 
but also need to consider the threat that the opponent may pose to us after our move, if the gain of the 
offense is greater than the loss which enemy's caused to us, then we choose an attack strategy, 
otherwise we choose a defend strategy. 

3.3.1 Pieces Attack Strategy Design 

When a piece walks, it may attack the opponent's piece, at this time, we need to consider whether the 
piece can defeat the opponent's piece, and the possible threat to our own piece after defeating the 
opponent's piece, assuming that the value of our piece is v, and the probability distribution of the 
opponent's attacked piece is P={p1,p2,p3,.... ,p12}, then when the opponent's piece is i, the expected 
gain we will get is: 

 

                     (4) 

 

Where pi represents the probability that the enemy piece is i, and vi represents the value of the enemy 
piece when it is i. We can check in Table 2 that when our piece level lvself is larger than the opponent's 
piece level lvenemy, then we can get the benefit of eating the opponent's piece, otherwise, we will lose 
the benefit of our own piece. When our piece successfully defeats the opponent's piece, we also need 
to consider the threat of the enemy's piece to our current piece when our piece is in a new position. 
Suppose a total of n enemy pieces are threatening to our current piece, and the probability distribution 
of the i-th piece is P={p1,p2,p3,.... ,p12}, then the loss value of the threat of this piece to our piece is 
set as: 

 

                     (5) 

 

At this point we have a complete consideration of the gains and losses incurred by the attack, and we 
can calculate the total score Attack_Score for the offense: 

 





n

j

i

i

i ExlossExvalueScoreAttack
1

12

1

_
 

(6) 

 

The pseudo-code for the attack function scoring valuation algorithm is shown in Algorithm 1 

Algorithm 1: Chess_Attack 

Input: mychess,enemychess 

Output: Attack_Score 

1: my_level←mychess.level 

2: i ← 0 

3: Attack_Score ← 0 

4: while i<12 do 
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5:     if enemy_level>my_level then 

6:       Attack_Score ← Attack_Score + enemychess.pro[i]*enemychess.value 

7:       my_pos ← enemychess.position 

8:       for j = 1 to 60 

9:           if dist[j][my_pos] == 1 and has_enemy_chess then 

10:                for k=0 to 11 

11:                  if enemy_level>my_level then 

12:                   Attack_Score←Attack_Score - enemychess.pro[k]*mychess.value 

13:                 end if 

14:               end for 

15:             end if 

16:          end for 

17:        else 

18:           Attack_Score ← Attack_Score - enemychess.pro[i]*mychess.value 

19:        end if   

20:        i ← i + 1 

21: end while  

22: return Attack_Score 

3.3.2 Piece Defense Strategy Design 

Before choosing the attack operation, we should first consider the threat of enemy pieces to our pieces, 
we can calculate the loss estimation of ordinary pieces refer to formula (5) . Since the survival of the 
flag determines the result of the game, the design of the defense function should be especially 
designed for the defense of the flag function, and secondly, our pieces close to the enemy's flag should 
also be the key object of protection, the defense function designed in this paper includes the protection 
of three types of pieces: Firstly, the protection of our flag, and then the protection of high-value pieces 
(e.g., those with high value of their own, and those close to the enemy's base camp or the flag position), 
and then the protection of other pieces. 

For the flag defend function: First, we start from our flag position and use breadth-first traversal (BFS) 
algorithm to search for the piece closest to our flag. Since the flag cannot move, when an enemy piece 
is close enough to our flag to pose a threat, we can only defeat the enemy piece by using our nearby 
pieces or by deploying landmines or bombs near the flag in the initial position. When enemy piece A 
is about to threaten our flag, we immediately search and move our nearby piece which has the highest 
probabilities to defeat A, and fix the best move as the current move, thus protecting the flag. The 
pseudo-code of the flag protection function is shown in Algorithm 2. 

Protecting high-value pieces: Assuming that the current high-value piece being protected is A. First, 
from the position of A, use BFS to search for the closest enemy piece B to A. Since piece A can move, 
we first consider moving A as far as possible toward the enemy base camp while avoiding enemy 
piece B. If this is not possible, then we choose to move A back to avoid enemy piece B. 

Algorithm 2: Flag_Defend 

Input: chess id,chess position 

Output:defend_flag; defend_chess 

1: flag_pos ← mychess[0].position  

2: pair<int,int> enemy←bfs(flag_pos) 

3: int step←enemy.first,id←enemy.second,enemy_pos←enemychess[id].position 
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4: Boolean defend_flag←false; 

5: if step<=4 then 

6:    while defend_chess can’t beat enemy do 

7:        Pair<int,int> defend_chess←bfs(enemy_pos) 

8:    defend_flag←true 

9: return {defend_flag,defend_chess}  

4. Experiment 

The UCB&MCTS military chess program based on move evaluation proposed in this paper is 
implemented using CodeBlocks software, C++ language. Through the experimental results, we 
determined the value of the cof parameter in the UCB formula to be 10; and the improved 
UCB&MCTS program and the two-player military chess program implemented by the ordinary 
MCTS program played 30 games for first move and second move respectively, and the results of the 
experiments are shown in the following table. 

 

Table 3. The result table of experiment(No time limit) 

 Improved UCB&MCTS   MCTS 

first move 25 wins 5 wins 

second move 22 wins 8 wins 

 

In order to simulate the situation that there is a time limit during the game, we limit the time for each 
side to 10 minutes, and for each move, the simulation program will be forced to exit after exceeding 
30 seconds. After setting the time limit, we again used the improved UCB&MCTS program and the 
two-player military chess program realized by the ordinary MCTS program to play 30 games against 
each other in first move and second move, and the experimental results are shown in the following 
table. 

 

Table 4. The result table of experiment(10 minutes limit) 

 Improved UCB&MCTS   MCTS 

first move 29 wins 1 wins 

second move 23 wins 7 wins 

 

It can be shown that the improved UCB&MCTS algorithm beats the MCTS algorithm more often, 
and the program power is effectively improved. When we limit the playing time, the winning rate of 
the improved UCB&MCTS program becomes higher, which also shows that the improved 
UCB&MCTS program can find better solutions than the normal MCTS program in a short time. 

5. Conclusion 

In this paper, a military chess move evaluation function is proposed by introducing the UCB formula 
for the weakness of the large time complexity of the simulation process of the MCTS algorithm. It 
enables the simulation process of MCTS algorithm to simulate more optimal nodes in a short time, 
thus realizing the efficiency improvement. However, the move evaluation function of piece value in 
this paper is relatively fixed in terms of moves and responses, and the expansion of the game tree is 
relatively small, which still has more space for improvement compared with those programs 
combined with deep learning. In the next research, machine learning algorithms such as Q-learning 
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can be introduced to dynamically adjust the parameters of the move evaluation function, so as to 
improve the program's chess power. 
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