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Abstract 

Face gear drives play an increasingly important role in the transmission systems of 
helicopter. Concentrated parameter dynamic model with 6 degrees of freedom (6-DOF) 
taking into account nonlinear backlash, time-varying stiffness of meshing, and 
coefficient of friction coupling has been developed for face-gear transmission systems 
under thermal elasto-hydrodynamics lubrication (EHL) conditions. The dynamic 
properties of the face-gear transmission system were analyzed using bifurcation 
diagrams. The effect of pinion rotation speed and support rigidity on the dynamic 
response of the face-gear transmission system was studied in detail using numerical 
methods. Numerical examples reveal several dynamic evolutionary mechanisms and 
kinetic states, including period 1, period 2, chaos and quasiperiodic motion. Some 
research results are useful for vibration control and dynamic design of the face-gear 
transmission system of helicopters. 
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1. Introduction 

Face-gear drives play an increasingly important role in helicopter power transmission systems due to 

their high torque splitting capability and sensitivity to misalignment errors [1-3]. Helicopter 

transmission systems are characterized by high speeds, high loads, and complex operating 

environments, and are prone to gear damage due to intense vibration. Therefore, it is essential to 

develop an accurate and reliable dynamic model of the gear transmission system to investigate the 

failure mechanism. In fact, the study of the dynamic behavior of gear transmission systems is one of 

the most important aspects of power transmission design.  

Nonlinear dynamic properties are one of the focus of research in gearing systems. Theodossiades [4] 

investigated the periodic steady-state response of a gear pair system involving time-dependent 

periodic meshing rigidity and backlash. The periodic steady state was then identified by employing 

techniques that can be applied to oscillators with periodic coefficients and piecewise linear systems.  

By thoroughly studying the dynamic behavior of gear systems, the consideration of nonlinear 

parameters is becoming more and more sophisticated. Gora [5] presented a modified dynamic model 

to investigate the dynamic response of a spur gear system, including the flash temperature of the 

contact surface. Paulis [6] studied dynamic behavior of a hypoid gear pair in an automobile, and his 

research was based on a thermal three-body dynamic model. 
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Face gear drives have been used in helicopter transmissions since the 1990s. Wang [7] proposed a 

dynamic model of flexion, torsion, and axial-coupled transmission system using centralized 

parameter theory. The nonlinear dynamic response of the face gear drive system was investigated by 

Wang using a six-degree-of-freedom dynamic model that takes into account backlash, time-varying 

stiffness of the meshing arm, time-varying meshing force, and the effects of correction [8]. Hura [9] 

presented a dynamic model of 14 degrees of freedom of a face-gear rotor system.  

In contrast to other types of gear systems, research on the dynamic behavior of gear-gear transmission 

systems is limited. Face gear drives are promising for use in helicopter transmissions. It is therefore 

essential to clarify the essential relationship between these factors and the dynamic behavior of the 

gear transmission system.  

2. Models for the Face-gear Transmission System 

2.1 Dynamic Model of Face-gear Transmission System 

For convenience of calculation, the gear body is regarded as a rigid disk with the same moment of 

inertia. The teeth meshes are modeled as nonlinear spring damper elements acting along line of action 

(LOA), and the bearings are simplified as linear spring damper elements. The dynamic model of face-

gear transmission system is depicted in Figure. 1.  

Herein,  represents the nonlinear friction that tangent to the contact tooth surfaces and 

perpendicular to the acting line at the instantaneous contact point,  denotes half of the total 

backlash,  and  are the time varing meshing stiffness and viscus mesh damping coefficient 

respectively,  represents the time varying static transmission error.  

 

 

Figure 1. The dynamic model of face-gear transmission system 

 

In addition, the generalized displacement vector is defined by: 

 

                              (1) 

 

The transmission error is: 
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                                 (3) 

 

The meshing force is: 

 

                          (4) 

 

The equations of the 6-DOF dynamic model can be derived as: 

 

                    (5) 

 

where  is the mass of gear ,  is the mass moment of inertia of gear ,  and  are the 

average supporting stiffness and bearing damping of gear  respectively along  direction ( ,

),  is the radius of instantaneous contact point of contact tooth pair n of gear ,  represents 

the load sharing ratio of contact tooth pair n, and N denotes the total number of contact tooth pairs at 

an instantaneous contact.  

The non-demensional time  is defined by , where  is the meshing period of gear teeth. 

The non-demensional displacements, velocities and accelerations can be expressed as: 

 

      (6) 

 

The non-demensional form of the dynamic modle is 
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Where: 

 

 

2.2 EHL Model 

2.2.1 Contact Model 

 

 

Figure 2. Localization of contact pattern 

 

 

Figure 3. Meshing model of face-gear transmission 
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are in point contact at every instant and the contact geometry parameters that are needed for thermal 

EHL can be obtained from unloaded tooth contact analysis. The assembly of face gear that meshes 

with a spur gear is schematically illustrated in Figure. 3 in which four coordinate systems are 

contained. The fixed coordinate systems  and  that are connected to the frame of machine 

rigidly are the reference of pinion and face gear respectively. And  is also the global coordinate 

system of this meshing model. The moving coordinate systems  and  are fixed to pinion and 

face gear respectively. According to the meshing theory, the surfaces of pinion and face gear is in 

continuous tangency, and the equivalence of position vector and collinear surface normal is observed 

at the instantaneous contact point in the fixed coordinate system . 

Thus, the continuous tangency conditions of the surfaces of pinion and face gear in the global 

coordinate system  can be expressed as: 

 

                           (8) 

 

where  and denote the position vector and surface normal of gear  respectively,  

represents the surface normal of shaper, the superscript (2) represents the global coordinate system 

,  is the relative surface velocity between shaper and face gear at the instantaneous contact 

point. Eq. (8) represents six independent nonlinear equations with seven variables. Therefore, once 

the rotational angle  of pinion is given, the other six variables can be obtained from the nonlinear 

equation system. 

 

 

Figure 4. Contact ellipse of pinion and face gear 
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                   (9) 

 

where  and  are the first and second principal curvature of gear  at the instantaneous 

contact point.  represents the angle between the principal direction and the minor axis of the 

contact ellipse of gear  at the instantaneous contact point. 

The equivalent elastic modulus can be expressed as: 

 

                                  (10) 

 

where  and  is the elastic modulus of the spur gear and the face gear respectively,  and  
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fixed coordinate system can be derived by: 

 

                                 (11) 
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                            (14) 

2.2.2 Basic Equations 

In this section, only a brief illustration of the basic lubrication equations is presented. In the elliptical 

contact area, the oil pressure is governed by the Reynolds equation. The general form of the equation 

with two directions of lubricant entrainment for the steady-state thermal EHL problem in point 

contacts can be expressed as [11]. 

 

                  (15) 

 

where ,  and  are the equivalent parameters in terms of non-Newton oil, which were 

defined in Ref. [12],  represents the oil pressure distribution in solution domain.  

The film thickness is represented as: 

 

                             (16) 

 

where  is a constant and  is the localized deformation of the instant contact area, which can 

be represented as: 

 

                       (17) 

 

where  represents comprehensive elastic modulus. 

The lubricant viscosity is derived Roelands model. 
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where , , , ,  and . 

The lubricant density is derived from Dowson-Higginson model. 
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                               (20) 

 

Ignoring the gradient of oil film pressure along the film thickness and the heat conduction, the energy 

equation for flash temperature is as follows: 

 

  (21) 

 

The energy equations for the flash temperature inside the solid are represented as 

 

                              (22) 

 

The friction coefficient is derived by: 
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directions respectively.  

2.3 Thermal EHL-based Time Varying Meshing Stiffness and Friction Coefficient 

2.3.1 LTCA under Thermal EHL Condition 

 

Figure 5. Global deformation and local deformation of gear tooth under thermal EHL condition 
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Accordingly, the local deformation is the results of oil film pressure and flash temperature acting on 

the contact tooth pair [28]. The tooth deformation that resulting from the oil film pressure is 

represented as Eq. (17). The tooth deformation  resulting from the flash temperature [17] can be 

represented as: 

 

                         (25) 

 

Herein,  is the temperature rise of the tooth surface of gear ,  represents the tooth thickness 

of the gear  at the instantaneous contact point,  represents the linear expansion of material,  

represents the press angle of gear  at the instantaneous contact point,  is the equivalent base 

radius of gear i. 

 

 

Figure 6. Local deformation under thermal EHL condition 
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                                   (28) 

 

where C is a constant number.  

And the load equilibrium condition of all the contact tooth pairs can be expressed as: 
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by Eq. (28) and Eq. (29). The initial load  of each contact tooth pair was calculated based on 

Hertzian contact theory rather than EHL to facilitate convergence. The above provide the geometric 

parameters and load for the thermal EHL model that established in Sec. 2.2.2.  

The load vector  and deformation vector  are obtained by solving Eq. (28) and Eq. (29) in 

one meshing circle. Accordingly, the time varying meshing stiffness can be represented by: 

 

                                    (30) 

 

In the processing of the calculation of LTCA under thermal EHL condition, the tooth deformation is 
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profile deformation resulting from flash temperature. The design parameters of the face-gear 

transmission are illustrated in Table 1. Based on the calculation of Sec. 2.3.1, the time varying 

meshing stiffness in one meshing circle is illustrated in Figure. 8. The friction coefficient of each 

instant contact can be obtained by Eq. (23). The time varying meshing friction coefficient in one 

meshing circle is illustrated in Figure. 9. 

 

Table 1. The parameters of face-gear transmission system 

Material parameters Value Gear design parameters Value 

Density of gears ρp,g (kg/m3) 7850 Tooth number of pinion zp 23 

Elastic modulus of gears Ep,g (Pa) 2.1×1011 Tooth number of face gear zg 86 

Poisson ratio of gears vp,g 0.3 Modulus m (mm) 4 

Specific heat of gears cp,g (J/(kg·℃)) 470 Tooth width B (mm) 25 

Thermal conductivity of gears kp,g (W/( m·℃)) 46 Pressure angle αn (deg) 25 

Ambient temperature T0 (℃) 40 Inner radius of face gear rin (mm) 164 

Viscosity-pressure coefficient α (m2/N) 2.2×10−8 Outer radius of face gear rout (mm) 189 

Ambient density of lubricant ρ0 (kg/m3) 870 Input torque Tin (N·m) 400 

Ambient viscosity of lubricant η0 (Pa·s) 0.04 Rotational speed of pinion np 

(rad/min) 

3000 

Specific heat of lubricant cf (J/(kg·℃)) 2000   

Thermal conductivity of lubricant kf (W/( m•℃)) 0.14   

Viscosity-temperature coefficient βT (K-1) 0.0476   

Characteristic shear stress τ0 (Pa) 1×107   

 

 

Figure 8. Time varying meshing stiffness in one meshing circle  
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Figure 9. friction coefficient in one meshing circle 

3. Nonlinear Dynamic Responses 

 

Figure 10. Computation procedure of the dynamic response of the face-gear transmission system 

 

As illustrated in Figure. 10, an iterative loop is organized to calculate the dynamic responses by 

adopting Runge-Kutta method and multigrid method. The gear design parameters and material 

parameters are prepared before the start of the iteration. Based on these parameters, LTCA under 

thermal EHL condition will be solved by the multigrid method. Thus, the time varying meshing 

stiffness  and the time varying meshing friction coefficient which are the nonlinear parameters 

of the dynamic model, are obtained. Then, the governing equations of the face gear dynamic model 

will be solved by the Runge-Kutta method. Hitherto, the dynamic gear meshing force  is 

obtained. The iterative loop will continue until convergence. And the nonlinear dynamic response can 

be obtained if the dynamic meshing force satisfies the convergence criterion of 10-3, if not, returning 

to the step of LTCA under thermal EHL condition.  

3.1 Effect of Rotational Speed of Pinion 

The pinion speed is one of the key parameters affecting the dynamic response of the face-gear 

transmission system. The figure 11 shows the bifurcation characteristics of the face-gear transmission 

system with no dimensional displacement relative to the pinion rotation speed, and there are four 

types of motion: periodic 1, chaotic, periodic 2, and quasi-periodic, depending on the rotation speed 

of pinion.  

When the rotation speed changes from 4800 rpm to 7600 rpm, the system's dynamic response returns 

to cycle one motion. This can be clearly seen in the diagram shown in Figure. 11. As the rotational 

speed increases from 7600 rpm to 8800 rpm, the system's dynamic response results in a period of 
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period 2 motion. For rotational speeds below 4000 rpm, the system's dynamic response is periodic 

one motion. As the rotational speed increases to 4000 rpm but below 4800 rpm, the dynamic response 

of the system changes from period 1 to chaotic motion. In this region, the bifurcation diagram contains 

a number of discrete points. There are many points in the Poincaré map, and the FFT spectrum also 

has multiple peak amplitude.  

 

 

Figure 11. Bifurcation diagram of face-gear transmission system using speed as bifurcation 

parameter 

3.2 Effect of Supporting Stiffness 

 

Figre 12. Bifurcation diagram of face-gear transmission system using pinion’s supporting stiffness 

as bifurcation parameter 

 

Pinion support stiffness is another key parameter that affects the dynamic response of the face-gear 

transmission system. The figure 12 shows the branching characteristics of the face-gear transmission 

system with no dimensional displacement relative to the support rigidity of the pinion as the rotation 

speed is 18 when 3000 rpm. As can be seen from the figure, there are three types of motion: period 

1, period 2, and chaotic motion.  

When the supporting stiffness of pinion is less than  N/m, the dynamic response of the system 

is the movement of period 1. As the support rigidity of the pinion increases from  N/m to 

 N/m, the system enters a cycle two motion and maintains its previous state. From  

N/m to  N/m, the system leaves periodic-2 and returns to periodic-1 again. When the 

supporting stiffness of pinion is increased to  N/m, the system dynamic response is changed 

from periodic-1 motion to chaotic motion, and it is continued until  N/m. When the supporting 

stiffness of pinion is greater than  N/m, the system leaves chaotic and return to periodic-1 

again. 

4. Conclusion 

Face-gear transmission systems are primarily used in helicopter transmission systems that require low 

vibration and high reliability. An accurate dynamic model of the face gear drive is the basis for 
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reducing vibration and improving reliability of the helicopter transmission system. Considering 

backlash, meshing rigidity and meshing friction, this paper presents a dynamic model of a face-gear 

transmission system under thermal EHL conditions. we used the runge-kutta and multi-grid methods 

to obtain dynamic responses through iterative loops. The effect of pinion rotation speed and support 

rigidity on the nonlinear dynamic response of the face-gear transmission system was analyzed 

numerically. 

As described in the above numerical example, the dynamic response of the system with the change 

of the pinion rotation speed and the support rigidity are as follows: period 1 motion, period 2 motion, 

Chaos motion and quasiperiodic motion. If the pinion rotation speed is between 4000 rpm and 4800 

rpm, the system's dynamic response is chaotic. Moreover, since the rotation speed is 3000 rpm, the 

support rigidity of pinion is taken as the bifurcation parameter, and the chaotic motion region is 

determined by the rotation speed, the region of chaotic motion is  N/m to  N/m. 

When the system is in a disorderly state of motion, the interaction between the gears becomes 

complicated and the gear vibration becomes intense, which leads to the failure or instability of the 

face-gear transmission system. To reduce vibration and increase stability, it is necessary to match the 

rotation speed and reduction ratio of the pinion and select the appropriate pinion support rigidity 

based on the optimal design method of the face-gear transmission system.  

Overall, the research in this paper not only presents a way to study the nonlinear dynamic properties 

of face-gear transmission systems, but also provides an idea for vibration control of the main gearbox 

of future helicopters. 
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