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Abstract 

A complex Cohen-Grossberg dynamic network model with time-varying delay, Markov 
chain, parameter switching, and reaction-diffusion terms is established. In order to 
reduce the design cost of the controller, a method combining aperiodic intermittence 
and pinning control is proposed, which makes the master-slave neural network realize 
exponential synchronization. Under the framework of non-separation, by using 
Lyapunov stability theory and the complex inequality technique, the master-slave 
system synchronization condition is obtained. Finally, the validity of the theorem is 
verified by a numerical simulation. 
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1. Introduction  

Cohen-Grossberg neural network (CGNNs) was first proposed[1], and then different types of CGNNs 

were widely studied, such as memristor CGNNs, reaction-diffusion CGNNs [2–3], and so on. 

However, this literature did not take into account that many actual systems would switch between 

different models during operation due to factors such as device failure or external environment 

changes, which can be described by the Markov chain [4]. In addition, complex valued neural 

networks have superior computational power and performance in symmetry detection [5]. In recent 

years, many scholars have divided complex value systems into real part and imaginary part systems 

for research, meanwhile achieved good research results [6]. Although the separation method is 

feasible, dividing a complex-valued system into two real-valued systems will greatly increase the 

complexity of theoretical analysis. Therefore, Feng et al. [7] used a non-separation method to analyze 

complex valued systems. 

On the other hand, aperiodic intermittent pinning control has excellent performance in the number of 

controlled nodes and control time, which can effectively reduce the amount of data transmission [8]. 

At present, some scholars have obtained good research results through intermittent pinning control 

[9-10]. However, non-periodic intermittent pinning control of Markovian reaction-diffusion complex 

CGNNs with parameter switching has not been studied. Therefore, this article explores this topic, and 

the innovation points and main achievements are as follows: 

1) This paper constructs a complex CGNNs with Markovian chains, and parameter-dependent state 

switching. It is more universal and more widely used. 
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2) A non-periodic intermittent pinning controller based on non-separation is designed, which can 

reduce the number of controllers to be designed and the control cost and make the analysis process 

simpler. 

Notations: In this article,  1,2, ,N=  N  with N is a positive integer, R,C  represents real and complex 

numbers respectively. ( ) ( )C Re ,Im    ，  represents the real and imaginary parts of  ,   = =  

represents the module of  , accordingly   is   conjugate complex number. , ; ,     

represents the absolute value and module value value of   respectively. And the space position

( ) 1 2, , , , 1,2, ,
T

m m   = =  =x x x x x . Symbolic function: ( ) ( ) ( )sgn sgn sgn iR I  = +   . abbreviations 

as follows: 
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2. Problem Description and Related Preparations 

2.1 Markovian Process and Connection Weight Switching Mechanism Description 

Consider a continuous-time Markovian chain  : 0tr t  with the following transition probabilities: 
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  = − . The state switching rules corresponding to the complex domain model:  
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Where: 0   is switching constant, , , , Cij ij ij ij    a a b b  satisfy ,ij ij ij ij    a a b b .Markovian process 

definition: tr S=  , switching process definition:  max ,ij ij ij   =   . 

2.2 Closed-loop Network Construction 

In this paper, consider the following CGNNs as the driving system: 
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Where:, Ci p  is the state variable of the i  th neuron at time t  and space x , ( ) ( ) ( ), , Ci i i i jf   p p  

represent the amplification function, the behavior function and the activation function of the system, 
, Cij ija b   represents the neuron connection weight, ( )t  represents a time-varying discrete delay and 

satisfy ( )t  , 
2 2 =  x  is the laplace diffusion operator defined on Ω , 0i   represents the 

diffusion coefficient of transmission along the i ineuron. CiJ   is external interference and conforms 

to the boundedness i iJ J . 

In addition, formula (1) satisfies the following conditions: 

 

 ( ) ( )  ) ( ) ( ) ( )  ), 0, , , , , , , ,0i i it t s s s  =  − + =  −pp x x p x x x                (2) 
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Obviously, (1) is a discontinuous system, and the traditional continuous solution cannot be defined. 

By set-valued mapping and differential inclusion theory, such as:  
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Where: co  is closed convex hull, ( ) ( ),ij i ij ico co       a p b p  as follows: 
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According to measurable theory ( ) ( )ij i ij ico 

     p p , (3) be rephrased as:  

 

 ( ) ( ) ( ) ( ) ( )
1 1

n n
i

i i i i ij j j ij i j j i i i

j j

f f J
t

       

= =

 
= −  − − + +  

  
 

p
p p a p b p p p               (5) 

 

The response system corresponding to (1) is as follows:  
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In addition, formula (6) satisfies:  

 

 ( ) ( )  ) ( ) ( ) ( )  ), 0, , , , , , , ,0i i it t s s s  =  − + =  −qq x x q x x x               (7) 

 

Similar to the above process:  
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Where ( ) ( ),ij i ij ico co       a q b q  as follows:  
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similarly ( ) ( )ij i ij ico 

     q q , (8) be rephrased as:  

 

 ( ) ( ) ( ) ( ) ( )
1 1

n n
i

i i i i ij j j ij i j j i i i

j

i

j

f f J
t

       

= =

 
= −  − − + +  + 

  
 

q
q q a q b q q q U            (10) 

 



International Core Journal of Engineering Volume 10 Issue 4, 2024 

ISSN: 2414-1895 DOI: 10.6919/ICJE.202404_10(4).0019 

 

155 

Set error signal: i i i= −w q p , The error dynamic behavior is as follows:  
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The necessary assumptions, lemmas, and definitions are given before the main result is obtained:  
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Where: 1 2 1 2, , C,i       . 

Lemma 1 [7]: : R C →h : ( ) ( )sgn sgn 2+ h h h h h . 

Lemma 2 [3]: A real-valued functions ( )xH  defined ( )1C   above that satisfy ( ) 0 =H x , then:  
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Definition 1 [8]: If 0, 1 m such as:  
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The response system (6) is exponentially synchronized with the drive system (1). 

3. Main Results 

3.1 Controller Design  

In order to synchronize the error system (11), intermittent pinning control is adopted:  
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Where: 1 0 0 10, 0; , 0 0 1, 0, 0i i l l l lk w t t w t +  = − =   = =，  and 1

1
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=
 . 

3.2 Criteria of Exponential Synchronization 

In order to express theorem 1 clearly, the following related symbolic definitions are given:  
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Theorem 1: Under hypothesis 1- 3, there exists positive constants 0 , , 0i ik    such that:  

 

  2 maxi i
S







                         (13) 

 

  2 maxi i
S

k





 +                          (14) 

 

 ( )( )inf1 + + −                           (15) 

 

Where:   inf 0inf ll +
= ,and (11) is globally exponentially stable. 

Prove: set ( ) rr r e  = − + , apparently ( ) ( ) ( )0 0 , 0 , 0r   +   , according to the intermediate value 

theorem, the function ( )r  must be a unique positive number 0  , satisfy ( ) 0e  = − + = . 

Construct the Lyapunov function:  
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With the help of hypothesis 1 and the basic inequalities of some complex numbers, apparently:  
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Similarly:  
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By the same method and considering the boundedness of external disturbances, the following 

inequality relations can be analyzed:  
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Through the boundary conditions and Green's formula and considering lemma 2, we can find out:  
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Bring the controller (12) into equation (17) and consider lemma 1 and 
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Considering equations (17) through (22), we get the following formula:  
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Next, it will be proved that the error system (11) can achieve global exponential synchronization, and 

the necessary definition is given first: ( ) ( ) ( ) ( ) ( )0 0
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Tkae condition (26) into ( )G t and considering condition (27): (note: ( ) 0e  = − + = ). 
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Considering definition 1, (14) is globally exponentially stable. 
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4. Simulation Verification 

Before giving a simulation example, to briefly describe the selected system parameters, define the 

following formula: ( ) ( ) ( ) ( ) ( ) ( ), , , 2 tanh , 2 tanhR I R I

i i i i R i I ix t real x t imag  = = = + = +p pp p p p p p . 

Consider  3-dimensional Markovian reaction-diffusion CGNNs with parameter switching (1) is used 

to verify the rationality of the developed theorem 1. Accordingly the transfer rate matrix of Markovian 

chain as: 
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Discrete time delay, external interference, and reaction-diffusion coefficient are shown below:  

 

( ) ( )   1 2 30.9 0.2 sin 1.1, 0.01, 1,1 1, 0.36 1.98  0.51 1.99  0.68 2.16i it t J i J i J i  = +   = = −  = = − + = − = − −， ， . 

 

In this paper, ,a  are used to represent the Markovian process and the connection weight switching 

respectively. Define ( ), ; 1,2; 1,2a A B a  = = = , 8.5 =  and specific values are as follows:  

 

11 12

0.78 0.65 0.32 0.51 0.53 0.61 0.82 0.67 0.52 0.61 0.35 0.21

0.66 0.62 1.05 1.83 0.84 1.43 0.76 0.63 0.99 0.97 0.65 0.61
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+ − + − + + − + − + 
 = − − + − + = − − + − +
 
 + − + − + − + 

21 22
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i i i

 
 
 
 − 
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In order to show clearly the switching function of the connection coefficient of the model in this paper, 

the four possibilities of switching correspond to the numbers 1,2,3, and 4 respectively, and then the 

spatial position 0 is analyzed, and the partial coefficient switching can be obtained as shown in Figure 

1:  

 



International Core Journal of Engineering Volume 10 Issue 4, 2024 

ISSN: 2414-1895 DOI: 10.6919/ICJE.202404_10(4).0019 

 

160 

 

Figure 1. Partial connection weight switch 

 

Figure 1 shows that there are frequent switching of system modes within 30 seconds, which is 

consistent with the actual modeling. Under the above parameter conditions, the real and imaginary 

parts trajectories and Markovian switching process as follow:  

 

 

Figure 2. The Markovian process and chaotic attractors 

 

Considering the response system (6), the error open-loop trajectories as shown in Figure 3:  

 

 

Figure 3. The Open-loop error trajectories 

 

It can be obtained by calculating the parameter conditions in theorem 1:  
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The control time corresponding to the intermittent controller designed in this paper is not arbitrarily 

given,.However, it is decided by equation (15) and ( ) 0e  = − + =  together. According to Figure 

4 inf 0.985760, = . Finally, the trajectory evolution of (11) is as follows:  

 

 

Figure 4. The Closed-loop error trajectory 

 

It can be seen from the figure above that the design of the aperiential intermittent pinning controller 

(12) is effective, and the error system (11) can be stabilized in a short time by shortening a part of the 

controller time and selecting a part of the controlled nodes. 

5. Conclusion 

In this work, the Markovian reaction-diffusion complex value CGNNs with parameter switching is 

proposed, the drive response system is studied directly by the method of non-separation, and the 

aperiodic intermittent pinning controller is designed to ensure the stability of the system. Then a 

suitable Lyapunov function is selected, exponential synchronization condition of the system is 

obtained, and the rationality of the theorem is demonstrated by numerical calculation. 
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