Intermittent Pinning Synchronization for Complex Values Markovian Cohen-Grossberg Neural Networks with ReactionDiffusion by A Nonseparation Approach

Fuin Liang, Xiaona Song*
School of Information Engineering, Henan University of Science and Technology, Luoyang, Henan 471000, China
*xiaona_97@163.com

Abstract

A complex Cohen-Grossberg dynamic network model with time-varying delay, Markov chain, parameter switching, and reaction-diffusion terms is established. In order to reduce the design cost of the controller, a method combining aperiodic intermittence and pinning control is proposed, which makes the master-slave neural network realize exponential synchronization. Under the framework of non-separation, by using Lyapunov stability theory and the complex inequality technique, the master-slave system synchronization condition is obtained. Finally, the validity of the theorem is verified by a numerical simulation.

Keywords

Complex Valued Markov Cohen-Grossberg Neural Network; Aperiodic Intermittent Pinning; Non-separation; Exponential Synchronization.

1. Introduction

Cohen-Grossberg neural network (CGNNs) was first proposed[1], and then different types of CGNNs were widely studied, such as memristor CGNNs, reaction-diffusion CGNNs [2-3], and so on. However, this literature did not take into account that many actual systems would switch between different models during operation due to factors such as device failure or external environment changes, which can be described by the Markov chain [4]. In addition, complex valued neural networks have superior computational power and performance in symmetry detection [5]. In recent years, many scholars have divided complex value systems into real part and imaginary part systems for research, meanwhile achieved good research results [6]. Although the separation method is feasible, dividing a complex-valued system into two real-valued systems will greatly increase the complexity of theoretical analysis. Therefore, Feng et al. [7] used a non-separation method to analyze complex valued systems.
On the other hand, aperiodic intermittent pinning control has excellent performance in the number of controlled nodes and control time, which can effectively reduce the amount of data transmission [8]. At present, some scholars have obtained good research results through intermittent pinning control [9-10]. However, non-periodic intermittent pinning control of Markovian reaction-diffusion complex CGNNs with parameter switching has not been studied. Therefore, this article explores this topic, and the innovation points and main achievements are as follows:

1) This paper constructs a complex CGNNs with Markovian chains, and parameter-dependent state switching. It is more universal and more widely used.
2) A non-periodic intermittent pinning controller based on non-separation is designed, which can reduce the number of controllers to be designed and the control cost and make the analysis process simpler.
Notations: In this article, $\mathfrak{N}=\{1,2, \cdots, N\}$ with N is a positive integer, R,C represents real and complex numbers respectively. $\forall \lambda \in \operatorname{C}, \operatorname{Re}(\lambda), \operatorname{Im}(\lambda)$ represents the real and imaginary parts of $\lambda,|\lambda|=\sqrt{\lambda \bar{\lambda}}=\sqrt{\bar{\lambda} \lambda}$ represents the module of λ, accordingly $\bar{\lambda}$ is λ conjugate complex number. $* \in \mathbb{R},|*| ; * \in \mathbb{C},|*|$ represents the absolute value and module value value of * respectively. And the space position $\Omega=\left\{\mathfrak{x}=\left(\mathfrak{x}_{1}, \mathfrak{x}_{2}, \ldots, \mathfrak{r}_{m}\right)^{T}\right\}| | \mathfrak{x}_{\sigma} \mid \leq \ell_{\sigma}, \sigma=1,2, \ldots, m$. Symbolic function: $\operatorname{sgn}(\lambda)=\operatorname{sgn}\left(\lambda^{R}\right)+\operatorname{sgn}\left(\lambda^{l}\right) \mathbf{i} \in \mathbb{C}$. abbreviations

2. Problem Description and Related Preparations

2.1 Markovian Process and Connection Weight Switching Mechanism Description

Consider a continuous-time Markovian chain $\left\{r_{t}: t \geq 0\right\}$ with the following transition probabilities:

$$
\operatorname{Pr}\left\{r_{t+\Delta t}=\imath \mid r_{t}=\varepsilon\right\}=\left\{\begin{array}{ll}
\kappa_{\varepsilon l} s+o(s), & \varepsilon \neq \imath \\
1+\kappa_{\varepsilon \varepsilon} s+o(s), & \varepsilon=\imath
\end{array}, \varepsilon, t \in S=\{1,2, \ldots, N\}\right.
$$

Where: s represents the residence time and satisfies $s>0, \lim _{s \rightarrow 0}[\rho(s) / s]=0, \kappa_{\varepsilon c}, \varepsilon \neq l$ is the transfer rate, and $\forall \varepsilon, l \in S, \kappa_{s e}=-\sum_{t \in S, l t e} \kappa_{\varepsilon l}$. The state switching rules corresponding to the complex domain model:

$$
\underline{\Lambda}_{a j}\left(\Gamma_{i}\right),(\underline{\Lambda}=\mathfrak{a}, \mathfrak{b} ; \Gamma=\mathfrak{p}, \mathfrak{q}), \underline{\Lambda}_{e i j}\left(\Gamma_{i}\right)=\left\{\begin{array}{l}
\hat{\Lambda}_{e i j},\left|\Gamma_{i}\right| \leq \mathfrak{I} \\
\underline{\Lambda}_{e j},\left|\Gamma_{i}\right|>\mathfrak{J}
\end{array}\right.
$$

 definition: $r_{t}=\varepsilon \in S$, switching process definition: $\tilde{\Lambda}_{e j}=\max \left\{\left\{\hat{\Lambda}_{a j}\left|,\left|\bar{\Lambda}_{e i j}\right|\right\}\right.\right.$.

2.2 Closed-loop Network Construction

In this paper, consider the following CGNNs as the driving system:

$$
\begin{equation*}
\frac{\partial \mathfrak{p}_{i}}{\partial t}=-\eta_{s i}\left(\mathfrak{p}_{i}\right) \times\left[\mu_{\varepsilon i}\left(\mathfrak{p}_{i}\right)-\sum_{j=1}^{n} \mathfrak{a}_{\varepsilon i j}\left(\mathfrak{p}_{i}\right) f_{j}\left(\mathfrak{p}_{j}\right)-\sum_{j=1}^{n} \mathfrak{b}_{\varepsilon i j}\left(\mathfrak{p}_{i}\right) f_{j}\left(\mathfrak{p}_{\tau j}\right)+J_{i}\right]+\theta_{i} \Delta \mathfrak{p}_{i}, i, j \in \mathfrak{N} \tag{1}
\end{equation*}
$$

Where:, $\mathfrak{p}_{i} \in \mathrm{C}$ is the state variable of the i th neuron at time t and space $\mathfrak{x}, \quad \eta_{i}\left(\mathfrak{p}_{i}\right), \mu_{i}\left(\mathfrak{p}_{i}\right), f_{j}(\cdot) \in \mathrm{C}$ represent the amplification function, the behavior function and the activation function of the system, $a_{i j}, b_{i j} \in \mathrm{C}$ represents the neuron connection weight, $\tau(t)$ represents a time-varying discrete delay and satisfy $\tau(t) \leq \tau, \quad \Delta=\partial^{2} / \partial x^{2}$ is the laplace diffusion operator defined on $\Omega, \quad \theta_{i}>0$ represents the diffusion coefficient of transmission along the i ineuron. $J_{i} \in \mathrm{C}$ is external interference and conforms to the boundedness $\left|J_{i}\right| \leq \tilde{J}_{i}$.
In addition, formula (1) satisfies the following conditions:

$$
\begin{equation*}
\mathfrak{p}_{i}(\mathfrak{x}, t)=0,(\mathfrak{x}, t) \in \partial \Omega \times[-\tau,+\infty) \quad \mathfrak{p}_{i}(\mathfrak{x}, s)=\varphi_{p i}(\mathfrak{x}, s),(\mathfrak{x}, s) \in \Omega \times[-\tau, 0) \tag{2}
\end{equation*}
$$

Obviously, (1) is a discontinuous system, and the traditional continuous solution cannot be defined. By set-valued mapping and differential inclusion theory, such as:

$$
\begin{equation*}
\frac{\partial \mathfrak{p}_{i}}{\partial t} \in-\eta_{\varepsilon i}\left(\mathfrak{p}_{i}\right) \times\left[\mu_{\varepsilon i}\left(\mathfrak{p}_{i}\right)-\sum_{j=1}^{n} c o\left[\mathfrak{a}_{s i j}\left(\mathfrak{p}_{i}\right)\right] f_{j}\left(\mathfrak{p}_{j}\right)-\sum_{j=1}^{n} c o\left[\mathfrak{b}_{s i j}\left(\mathfrak{p}_{i}\right)\right] f_{j}\left(\mathfrak{p}_{\tau j}\right)+J_{i}\right]+\theta_{i} \Delta \mathfrak{p}_{i} \tag{3}
\end{equation*}
$$

Where: $c o$ is closed convex hull, $c o\left[\mathfrak{a}_{s i j}\left(\mathfrak{p}_{i}\right)\right], c o\left[\mathfrak{b}_{s i j}\left(\mathfrak{p}_{i}\right)\right]$ as follows:

According to measurable theory $\exists \underline{\Lambda}_{\varepsilon i j}^{*}\left(\mathfrak{p}_{i}\right) \in c o\left[\underline{\Lambda}_{s i}\left(\mathfrak{p}_{i}\right)\right]$, (3) be rephrased as:

$$
\begin{equation*}
\frac{\partial \mathfrak{p}_{i}}{\partial t}=-\eta_{s i}\left(\mathfrak{p}_{i}\right) \times\left[\mu_{s i}\left(\mathfrak{p}_{i}\right)-\sum_{j=1}^{n} \mathfrak{a}_{\varepsilon i j}^{*} f_{j}\left(\mathfrak{p}_{j}\right)-\sum_{j=1}^{n} \mathfrak{b}_{\varepsilon i j}^{*}\left(\mathfrak{p}_{i}\right) f_{j}\left(\mathfrak{p}_{\tau j}\right)+J_{i}\right]+\theta_{i} \Delta \mathfrak{p}_{i} \tag{5}
\end{equation*}
$$

The response system corresponding to (1) is as follows:

$$
\begin{equation*}
\frac{\partial \mathfrak{q}_{i}}{\partial t}=-\eta_{s i}\left(\mathfrak{q}_{i}\right) \times\left[\mu_{s i}\left(\mathfrak{q}_{i}\right)-\sum_{j=1}^{n} \mathfrak{a}_{s i j}\left(\mathfrak{q}_{i}\right) f_{j}\left(\mathfrak{q}_{j}\right)-\sum_{j=1}^{n} \mathfrak{b}_{\varepsilon i j}\left(\mathfrak{q}_{i}\right) f_{j}\left(\mathfrak{q}_{\tau j}\right)+J_{i}\right]+\theta_{i} \Delta \mathfrak{q}_{i}+\mathfrak{U}_{i} \tag{6}
\end{equation*}
$$

In addition, formula (6) satisfies:

$$
\begin{equation*}
\mathfrak{q}_{i}(\mathfrak{x}, t)=0,(\mathfrak{x}, t) \in \partial \Omega \times[-\tau,+\infty) \quad \mathfrak{q}_{i}(\mathfrak{x}, s)=\varphi_{q i}(\mathfrak{x}, s),(\mathfrak{x}, s) \in \Omega \times[-\tau, 0) \tag{7}
\end{equation*}
$$

Similar to the above process:

$$
\begin{equation*}
\frac{\partial \mathfrak{q}_{i}}{\partial t} \in-\eta_{s i}\left(\mathfrak{q}_{i}\right) \times\left[\mu_{s i}\left(\mathfrak{q}_{i}\right)-\sum_{j=1}^{n} c o\left[\mathfrak{a}_{\varepsilon i j}\left(\mathfrak{q}_{i}\right)\right] f_{j}\left(\mathfrak{q}_{j}\right)-\sum_{j=1}^{n} c o\left[\mathfrak{b}_{s i j}\left(\mathfrak{q}_{i}\right)\right] f_{j}\left(\mathfrak{q}_{t j}\right)+J_{i}\right]+\theta_{i} \Delta \mathfrak{q}_{i}++\mathfrak{U}_{i} \tag{8}
\end{equation*}
$$

Where $c o\left[\mathfrak{a}^{s i j}\left(\mathfrak{q}_{i}\right)\right], c o\left[\mathfrak{b}^{s i j}\left(\mathfrak{q}_{i}\right)\right]$ as follows:
similarly $\exists \Lambda_{\varepsilon i j}^{* *}\left(\mathfrak{q}_{i}\right) \in c o\left[\Lambda_{d i j}\left(\mathfrak{q}_{i}\right)\right]$, (8) be rephrased as:

$$
\begin{equation*}
\frac{\partial \mathfrak{q}_{i}}{\partial t}=-\eta_{e i}\left(\mathfrak{q}_{i}\right) \times\left[\mu_{e i}\left(\mathfrak{q}_{i}\right)-\sum_{j=1}^{n} \mathfrak{a}_{e j i z}^{* *} f_{j}\left(\mathfrak{q}_{j}\right)-\sum_{j=1}^{n} \mathfrak{b}_{i j i z}^{* *}\left(\mathfrak{q}_{i}\right) f_{j}\left(\mathfrak{q}_{z j}\right)+J_{i}\right]+\theta_{i} \Delta \mathfrak{q}_{i}+\mathfrak{U}_{i} \tag{10}
\end{equation*}
$$

Set error signal: $\mathfrak{w}_{i}=\mathfrak{q}_{i}-\mathfrak{p}_{i}, \quad$ The error dynamic behavior is as follows:

$$
\begin{align*}
& \frac{\partial \mathfrak{w}_{i}}{\partial t}=v_{p q}^{p u}+\theta_{i} \Delta \mathfrak{w}_{i}+v_{p q}^{\prime p_{p}}+\mathfrak{U}_{i}+\eta_{z i}\left(\mathfrak{q}_{i}\right) \sum_{j=1}^{n} a_{z i j}^{* *}\left(\mathfrak{q}_{i}\right) f_{j}\left(\mathfrak{q}_{j}\right)-\eta_{z i}\left(\mathfrak{p}_{i}\right) \sum_{j=1}^{n} a_{i j}^{* *}\left(\mathfrak{p}_{i}\right) f_{j}\left(\mathfrak{p}_{j}\right) \\
& \quad+\eta_{z i}\left(\mathfrak{q}_{i}\right) \sum_{j=1}^{n} b_{e i j}^{* *}\left(\mathfrak{q}_{i}\right) f_{j}\left(\mathfrak{q}_{z j}\right)-\eta_{z i}\left(\mathfrak{p}_{i}\right) \sum_{j=1}^{n} b_{i j}^{*}\left(\mathfrak{p}_{i}\right) f_{j}\left(\mathfrak{p}_{z j}\right) \tag{11}
\end{align*}
$$

The necessary assumptions, lemmas, and definitions are given before the main result is obtained:
Assumption 1 [11]: If $\mathcal{N}_{a i}^{\eta}, \mathcal{N}_{j}^{f}, \mathcal{T}_{e i}^{n}, \mathcal{T}_{s i}^{n u}, \mathcal{L}_{j}^{f}>0$ such that:

$$
\begin{aligned}
& \left|\eta_{e i}\left(\tilde{\lambda}_{2}\right)-\eta_{z i}\left(\tilde{\lambda}_{1}\right)\right| \leq \mathcal{I}_{s i}^{\eta}\left|\tilde{\lambda}_{2}-\tilde{\lambda}_{1}\right|,\left|\eta_{z i}\left(\tilde{\lambda}_{i}\right)\right| \leq \mathcal{N}_{i s}^{n}\left|,\left|f_{j}\left(\tilde{\lambda}_{2}\right)-f_{j}\left(\tilde{\lambda}_{1}\right)\right| \leq \mathcal{I}_{j}^{f}\right| \tilde{\lambda}_{2}-\tilde{\lambda}_{1} \mid \\
& \left|f_{j}\left(\tilde{\lambda}_{i}\right)\right| \leq \mathcal{N}_{j}^{f},\left|\eta_{z i}\left(\tilde{\lambda}_{2}\right) \mu_{e i}\left(\tilde{\lambda}_{2}\right)-\eta_{i i}\left(\tilde{\lambda}_{1}\right) \mu_{e i}\left(\tilde{\lambda}_{1}\right)\right| \leq \mathcal{I}_{s i}^{n \mu}\left|\tilde{\lambda}_{2}-\tilde{\lambda}_{1}\right|
\end{aligned}
$$

Where: $\forall \tilde{\lambda}_{i}, \tilde{\lambda}_{1}, \tilde{\lambda}_{2} \in \mathrm{C}, \tilde{\lambda}_{1} \neq \tilde{\lambda}_{2}$.
Lemma 1 [7]: $\forall \mathfrak{h}: R \rightarrow C: \overline{\operatorname{sgn}(\mathfrak{h})} \mathfrak{h}+\overline{\mathfrak{h}} \operatorname{sgn}(\mathfrak{h}) \geq 2|\mathfrak{h}|$.
Lemma 2 [3]: A real-valued functions $\mathfrak{H}(x)$ defined $C^{1}(\Omega)$ above that satisfy $\left.\mathfrak{H}(x)\right|_{\mathscr{c}_{2}}=0$, then:

$$
\int_{\Omega} \mathfrak{H}^{2}(\mathfrak{x}) d \mathfrak{x} \leq \ell_{\sigma}^{2} \int_{\Omega}\left|\frac{\partial \mathfrak{H}(\mathfrak{x})}{\partial \mathfrak{x}_{\sigma}}\right|^{2} d \mathfrak{x}
$$

Where: $\Omega=\left\{\mathfrak{x}=\left(\mathfrak{x}_{1}, \mathfrak{x}_{2}, \ldots, \mathfrak{r}_{m}\right)^{T}\right\}| | \mathfrak{x}_{\sigma} \mid \leq \ell_{\sigma}, \sigma=1,2, \ldots, m$.
Definition 1 [8]: If $\mathfrak{m}>0, \varsigma>1$ such as:

$$
\left\|\mathfrak{q}_{i}-\mathfrak{p}_{i}\right\| \leq \varsigma \sup _{-\tau \leq s \leq 0}\left\|\psi_{i}(\mathfrak{r}, s)-\varphi_{i}(\mathfrak{x}, s)\right\| e^{-\mathrm{mw}}
$$

The response system (6) is exponentially synchronized with the drive system (1).

3. Main Results

3.1 Controller Design

In order to synchronize the error system (11), intermittent pinning control is adopted:

$$
\mathfrak{U}_{i}=\left\{\begin{array}{lr}
-\operatorname{sgn}\left(\mathfrak{w}_{i}\right)\left(k_{i} \frac{\sum_{i=1}^{n}\left|\mathfrak{w}_{i}\right|}{\sum_{i=1}^{n}\left|\mathfrak{w}_{i}\right|} \sum_{i=1}^{n}\left|\mathfrak{w}_{i}\right|+\phi_{i} \frac{\sum_{i=1}^{n}\left|\mathfrak{w}_{i}\right|}{\sum_{i=1}^{n}\left|\mathfrak{w}_{i}\right|}\right) & t_{l} \leq t<t_{l}+\mathcal{X}_{l} w_{l} \tag{12}\\
-\operatorname{sgn}\left(\mathfrak{w}_{i}\right) \phi_{i} \frac{\sum_{i=1}^{n}\left|\mathfrak{w}_{i}\right|}{\sum_{i=1}^{n}\left|\mathfrak{w}_{i}\right|}, & t_{l}+\mathcal{X}_{l} w_{l} \leq t<t_{l+1} \\
, i \in \mathfrak{N}_{1}=\left\{1,2, \ldots N_{1}\right\}\left(1 \leq N_{1}<\mathrm{N}\right)
\end{array}\right.
$$

Where: $k_{i}>0, \phi_{i}>0 ; w_{l}=t_{l+1}-t_{l}, w_{0}=0,0<\mathcal{X}_{l}<1, \mathcal{X}_{0}=0, t_{1}=0$ and $\sum_{i=1}^{n}| |_{i} \mid \neq 0$.

3.2 Criteria of Exponential Synchronization

In order to express theorem 1 clearly, the following related symbolic definitions are given:

$$
\begin{aligned}
& \mathcal{P}^{+}=\max \{0, \mathcal{P}\}, \quad \Xi_{a i}=\sum_{j=1}^{n}\left(2 \tilde{\mathfrak{a}}_{s i j}\left(\mathcal{N}_{i i}^{n} \mathcal{I}_{j}^{f}+\mathcal{N}_{j}^{f} \mathcal{I}_{i i}^{n}\right)+2 \tilde{\mathfrak{b}}_{a j} \mathcal{N}_{j}^{f} \mathcal{I}_{s i}^{n}+\tilde{\boldsymbol{w}}_{a j} \mathcal{N}_{a i}^{n} \mathcal{T}_{j}^{f}\right)+2\left|J_{i} \mathcal{I}_{a i}^{n}\right|+2\left|\mathcal{I}_{i i}^{n \mu}\right|-2 \frac{\theta_{i}}{\ell_{\sigma}^{2}},
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}_{n f(\text { (wab) }}=\eta_{z i}\left(\mathfrak{q}_{i}\right) \mathfrak{a}_{z i j}^{*}\left(\mathfrak{p}_{i}\right)\left(f_{j}\left(\mathfrak{q}_{j}\right)-f_{j}\left(\mathfrak{p}_{j}\right)\right) \mathcal{A}_{v j f(\operatorname{sub})}=\eta_{z i}\left(\mathfrak{q}_{i}\right) \mathfrak{b}_{z i j}^{*}\left(\mathfrak{p}_{i}\right)\left(f_{j}\left(\mathfrak{q}_{z j}\right)-f_{j}\left(\mathfrak{p}_{z j}\right)\right) \text {, }
\end{aligned}
$$

Theorem 1: Under hypothesis 1-3, there exists positive constants $\mathcal{W}>\mathcal{T} \geq 0, k_{i}, \phi_{i}>0$ such that:

$$
\begin{gather*}
2 \phi_{i}>\max _{\varepsilon \in S}\left\{\Pi_{i i}\right\} \tag{13}\\
2 k_{i}>\max _{\varepsilon \in S}\left\{\Xi_{s i}\right\}+\mathcal{W} \tag{14}\\
\varepsilon>\left(\mathcal{W}+\mathcal{P}^{+}\right)\left(1-\mathcal{X}_{\text {irf }}\right) \tag{15}
\end{gather*}
$$

Where: $\inf _{l \in \mathbb{Z}^{t}}\left\{\mathcal{X}_{l}\right\}=\mathcal{X}_{\text {inf }}>0$, and (11) is globally exponentially stable.
Prove: set $\phi(r)=r-\mathcal{W}+\mathcal{T}^{r r}$, apparently $\phi(0)<0, \phi(+\infty)>0, \dot{\phi}(r)>0$, according to the intermediate value theorem, the function $\phi(r)$ must be a unique positive number $\varepsilon>0$, satisfy $\phi(\varepsilon)=\varepsilon-\mathcal{W}+\mathcal{T e}^{\varepsilon \tau}=0$. Construct the Lyapunov function:

$$
\begin{equation*}
\mathfrak{V}(t)=\int_{\Omega} \sum_{i=1}^{n} \mathfrak{w}_{i} \overline{\mathfrak{w}_{i}} d \mathfrak{x} \tag{16}
\end{equation*}
$$

When $t \in\left[t_{l}, t_{l}+\mathcal{X}_{l} w_{l}\right), l \in \mathbb{Z}^{+}, \quad$ The expression for $\dot{\mathfrak{V}}(t)$ is as follows :

With the help of hypothesis 1 and the basic inequalities of some complex numbers, apparently:

Similarly:

By the same method and considering the boundedness of external disturbances, the following inequality relations can be analyzed:

Through the boundary conditions and Green's formula and considering lemma 2, we can find out:

$$
\begin{align*}
& \int_{\Omega} \sum_{i=1}^{n} \overline{\mathfrak{w}_{i}}\left(\theta_{i} \Delta \mathfrak{w}_{i}\right) d \mathfrak{x}+\int_{\Omega i=1}^{n} \sum_{i} \mathfrak{w}_{i}\left(\theta_{i} \overline{\Delta \mathfrak{w}_{i}}\right) d \mathfrak{x} \leq \int_{\Omega} \sum_{i=1}^{n} \theta_{i} \frac{\partial}{\partial x}\left(\overline{\mathfrak{w}_{i}} \frac{\partial \mathfrak{w}_{i}}{\partial x}\right) d \mathfrak{x}-\int_{\Omega} \sum_{i=1}^{n} \theta_{i} \frac{\partial \mathfrak{w}_{i}}{\partial x} \frac{\partial \overline{\mathbf{w}_{i}}}{\partial x} d \underline{x} \\
& +\int_{\Omega}^{n} \sum_{i=1}^{n} \theta_{i} \frac{\partial}{\partial x}\left(\mathfrak{w}_{i} \overline{\frac{\mathbf{w}_{i}}{\partial x}}\right) d \mathfrak{x}-\int_{\Omega} \sum_{i=1}^{n} \theta_{i} \overline{\frac{\mathbf{w}_{i}}{\partial x}} \frac{\partial \mathfrak{w}_{i}}{\partial x} d \mathfrak{x}=-2 \int_{\Omega} \sum_{i=1}^{n} \theta_{i}\left|\frac{\partial \mathfrak{w}_{i}}{\partial x}\right|^{2} d \mathfrak{x} \leq-2 \int_{\Omega} \sum_{i=1}^{n} \frac{\theta_{i}}{\ell_{\sigma}^{2}} \overline{\mathfrak{w}_{i}} \mathfrak{w}_{i} d \mathfrak{x} \tag{21}
\end{align*}
$$

Bring the controller (12) into equation (17) and consider lemma 1 and $\sum_{i=1}^{n}\left|\mathfrak{w}_{i}\right| \sum_{i=1}^{n}\left|\mathfrak{w}_{i}\right| \geq \sum_{i=1}^{n}\left|\mathfrak{w}_{i}\right|^{2}$:

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{m \mathfrak{1}}\left(\mathfrak{U}_{i} \overline{\mathfrak{w}}_{i}+\overline{\mathfrak{u}_{i} \mathfrak{w}_{i}}\right) d \mathfrak{x} \leq-2 k_{i} \int_{\Omega i=1}^{n} \sum_{i=1}^{n}\left|\mathfrak{w}_{i}\right|^{2} d \mathfrak{x}-2 \phi_{i} \int_{\Omega=1}^{n} \sum_{i=1}^{n}\left|\mathfrak{w}_{i}\right| d \mathfrak{x} \tag{22}
\end{equation*}
$$

Considering equations (17) through (22), we get the following formula:

$$
\begin{equation*}
\dot{\mathfrak{V}}(t) \leq \mathcal{T} \int_{\Omega} \sum_{i=1}^{n} \overline{\mathfrak{w}_{\tau i}} \mathfrak{w}_{\tau i} d \mathfrak{x}++\int_{\Omega} \sum_{i=1}^{n}\left(\Xi_{\varepsilon i}+\mathcal{W}-2 k_{i}\right) \overline{\mathfrak{w}_{i}} \mathfrak{w}_{i} d \mathfrak{x}-\mathcal{W} \int_{\Omega} \sum_{i=1}^{n} \overline{\mathfrak{w}_{i}} \mathfrak{w}_{i} d \mathfrak{x}+\int_{\Omega} \sum_{i=1}^{n}\left(\Pi_{\varepsilon i j}-2 \phi_{i}\right)\left|\mathfrak{w}_{i}\right| d \mathfrak{x} \tag{23}
\end{equation*}
$$

According to conditions (13), (14), obviously:

$$
\begin{equation*}
\dot{\mathfrak{V}}(t) \leq-\mathcal{W} \mathfrak{V}(t)+\mathcal{T} \sup _{t-\mathcal{T}(t) \leq s \leq t} \mathfrak{V}(s), t \in\left[t_{l}, t_{l}+\mathcal{X}_{l} w_{l}\right), l \in \mathbb{Z}^{+} \tag{24}
\end{equation*}
$$

When $t \in\left[t_{l}+\mathcal{X}_{l} w_{l}, t_{l+1}\right), l \in \mathbb{Z}^{+}, \quad \exists \mathcal{P}^{+}=\max \{0, \mathcal{P}\}$ makes the following formula true:

$$
\begin{equation*}
\dot{\mathfrak{V}}(t) \leq \mathcal{T} \int_{\Omega} \sum_{i=1}^{n} \overline{\mathfrak{w}_{\tau i}} \mathfrak{w}_{\tau i} d \mathfrak{x}+\int_{\Omega} \sum_{i=1}^{n} \Xi_{\varepsilon i} \overline{\mathfrak{w}_{i}} \mathfrak{w}_{i} d \mathfrak{x}+\int_{\Omega} \sum_{i=1}^{n}\left(\Pi_{\varepsilon i j}-2 \phi_{i}\right)|\mathfrak{w} i| d \mathfrak{x} \leq \mathcal{P}^{+} \mathfrak{V}(t)+\mathcal{T} \sup _{t-\tau(t) \leq s \leq t} \mathfrak{V}(s) \tag{25}
\end{equation*}
$$

Hence:

$$
\dot{\mathfrak{V}}(t) \leq\left\{\begin{array}{l}
-\mathcal{W} \mathcal{V}(t)+\mathcal{T} \sup _{t-t(t) \leq s t} \mathfrak{V}(s), t \in\left[t_{l}, t_{l}+\mathcal{X}_{l} w_{l}\right), l \in \mathbb{Z}^{+} \tag{26}\\
\mathcal{P}_{1}^{+} \mathfrak{V}(t)+\mathcal{T} \sup _{t-\tau(t) \leq s \leq s t} \mathfrak{V}(s), t \in\left[t_{l}+\mathcal{X}_{l} w_{l}, t_{l+1}\right), l \in \mathbb{Z}^{+}
\end{array}\right.
$$

Next, it will be proved that the error system (11) can achieve global exponential synchronization, and the necessary definition is given first: $\tilde{N}_{0}=\sup _{-t \leq s \leq 0} \mathfrak{V}(s), L(t)=e^{\varepsilon t} \mathfrak{V}(t), G(t)=L(t)-c \tilde{N}_{0}, c \rightarrow 1$, obviously: $G(t)<0, t \in\left[-\tau, t_{1}\right], t_{1}=0$, suppose $G(t)<0, t \in\left[t_{1}, t_{1}+\mathcal{X}_{1} w_{1}\right)$, if this condition is not met, then:

Tkae condition (26) into $\dot{G}\left(t^{*}\right)$ and considering condition (27): (note: $\phi(\varepsilon)=\varepsilon-\mathcal{W}+\mathcal{T e}^{\varepsilon \tau}=0$).

$$
\left\{\begin{array}{l}
\dot{G}\left(t^{*}\right)=\varepsilon L\left(t^{*}\right)+e^{\varepsilon e^{*}} \dot{\mathfrak{V}}\left(t^{*}\right) \leq \varepsilon L\left(t^{*}\right)+e^{\varepsilon t^{*}}\left(-\mathcal{W V}\left(t^{*}\right)+\mathcal{T} \sup _{t_{-\tau t(t) \leq \leq s \mathcal{I}^{*}}} \mathfrak{V}(s)\right) \tag{28}\\
<(\varepsilon-\mathcal{W}) L\left(t^{*}\right)+\mathcal{T} e^{\varepsilon \tau} L\left(t^{*}\right)=0 \Rightarrow \dot{G}\left(t^{*}\right)<0
\end{array}\right.
$$

Hence: $G(t)<0, t \in\left[-\tau, t_{1}+\mathcal{X}_{1} w_{1}\right) \Rightarrow L(t)<c \tilde{N}_{0}, t \in\left[-\tau, t_{1}+\mathcal{X}_{1} w_{1}\right)$.
Similarly, defined expression: $\mu=\mathcal{W}+\mathcal{P}_{1}^{+}, L(t)=e^{e t} \mathfrak{V}(t), \hat{\Psi}(t)=L(t)-c \tilde{N}_{0} e^{\mu\left(t-t_{1}-\mathcal{X}_{1} w_{1}\right)}<0 \quad t \in\left[t_{1}+\mathcal{X}_{1} w_{1}, t_{2}\right)$,
If the above conditions are not true, then: $\left\{\begin{array}{l}\hat{\Psi}\left(t^{* *}\right)=0, \dot{\tilde{\Psi}}\left(t^{* *}\right) \geq 0, \exists t^{* *} \in\left[t_{1}+\mathcal{X}_{1} w_{1}, t_{2}\right) \\ \hat{\Psi}(t)<0, t \in\left[t_{1}+\mathcal{X}_{1} w_{1}, t^{* *}\right)\end{array}\right.$.
On account of $\tau>0$, it is divided into the following two situations to discuss:

Case 2: $t^{* *}-\tau \in\left[-\tau, t_{1}+\mathcal{X}_{1} w_{1}\right), e^{\varepsilon t^{* *}} \sup _{r=-\tau \leq s 1^{\prime \prime}} V(s)<e^{\varepsilon \tau} c \tilde{N}_{0} \leq e^{\varepsilon \tau} L\left(t^{* *}\right)$.

That proves: $L(t)<c \tilde{N}_{0} e^{\mu\left(2-1-1-\chi_{1}\left(w_{1}\right)\right.}=c \tilde{N}_{0} e^{\mu\left(1-x_{1}\right) w}, t \in\left[-\tau, t_{2}\right)$ hold.
In conclusion, the following conclusions can be summarized: (note: $t_{1}=0$).

$$
\begin{align*}
& L(t)<c \tilde{N}_{0}, t \in\left[t_{1}, t_{1}+\mathcal{X}_{1} w_{1}\right) \Rightarrow L(t)<c \tilde{N}_{0} e^{\mu\left(t-1-1-\mathcal{X}_{1}\left(w_{1}\right)\right.}=c \tilde{N}_{0} e^{\mu\left(t-\mathcal{X}_{\left(w_{1}\right)}\right)} t \in\left[t_{1}+\mathcal{X}_{1} w_{1}, t_{2}\right) \Rightarrow \\
& L(t)<c \tilde{N}_{0} e^{\mu\left(1-x_{1}\right) m_{1}}, t \in\left[t_{2}, t_{2}+\mathcal{X}_{2} w_{2}\right) \Rightarrow L(t)<c \tilde{N}_{0} e^{\mu\left(1-\mathcal{X}_{1}\right) w_{1}} * e^{\mu\left(t-t_{2}-\mathcal{X}_{2} w_{2}\right)}=c \tilde{N}_{0} e^{\mu\left(t-X_{w_{1}}-\mathcal{X}_{2} w_{2}\right)}, t \in\left[t_{2}+\mathcal{X}_{2} w_{2}, t_{3}\right) \tag{29}
\end{align*}
$$

Set $\forall m \in \mathbb{Z}^{+}, w_{0}=0, \mathcal{X}_{0}=0$, The following formula can be summarized by mathematical induction:

$$
L(t)<\left\{\begin{array}{l}
c \tilde{N}_{0} \exp \left\{\mu\left(\sum_{l=0}^{m-1}\left(1-\mathcal{X}_{l}\right) w_{l}\right)\right\} \leq c \tilde{N}_{0} \exp \left\{\mu\left(1-\mathcal{X}_{\text {inf }}\right) \sum_{l=0}^{m-1} w_{l}\right\}, t \in\left[t_{m}, t_{m}+\mathcal{X}_{m} w_{m}\right) \\
c \tilde{N}_{0} \exp \left\{\mu\left(t-\sum_{l=0}^{m} \mathcal{X}_{l} w_{l}\right)\right\} \leq c \tilde{N}_{0} \exp \left\{\mu\left(t-\mathcal{X}_{\text {inf }} \sum_{l=0}^{m} w_{l}\right)\right\}, t \in\left[t_{m}+\mathcal{X}_{m} w_{m}, t_{m+1}\right)
\end{array} \Rightarrow \mathfrak{V}(t)<c \tilde{N}_{0} e^{\left.\left(\left(w_{t+R}\right)^{R}\right)\left(1-\mathcal{X}_{(m)}\right)-c\right) t}\right.
$$

Considering definition $1,(14)$ is globally exponentially stable.

4. Simulation Verification

Before giving a simulation example, to briefly describe the selected system parameters, define the following formula: $\mathfrak{p}_{i}^{R}(x, t)=\operatorname{real}\left(\mathfrak{p}_{i}\right), \mathfrak{p}_{i}^{t}(x, t)=\operatorname{imag}\left(\mathfrak{p}_{i}\right) \varphi_{\mathrm{pR}}=2+\tanh \left(\mathfrak{p}_{i}^{R}\right), \varphi_{p 1}=2+\tanh \left(\mathfrak{p}_{i}^{T}\right)$.
Consider 3-dimensional Markovian reaction-diffusion CGNNs with parameter switching (1) is used to verify the rationality of the developed theorem 1. Accordingly the transfer rate matrix of Markovian chain as: $\left[\begin{array}{cc}-2.3 & 2.3 \\ 2.5 & -2.5\end{array}\right]$, select and calculate the following parameters:

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
\eta_{11}\left(\mathfrak{p}_{i}\right)=2.11 / \varphi_{\mathrm{pR}}+2.02 / \varphi_{\mathrm{p} I} * i, \eta_{21}\left(\mathfrak{p}_{i}\right)=2.03 / \varphi_{\mathrm{p} R}+2.13 / \varphi_{\mathrm{p} I} * i, \eta_{12}\left(\mathfrak{p}_{i}\right)=2.53 / \varphi_{\mathrm{pR}}+2.61 / \varphi_{\mathrm{p} I} * i \\
\eta_{22}\left(\mathfrak{p}_{i}\right)=2.66 / \varphi_{\mathrm{pR}}+2.57 / \varphi_{\mathrm{p} I} * i, \eta_{13}\left(\mathfrak{p}_{i}\right)=2.03 / \varphi_{\mathrm{p} R}+2.09 / \varphi_{\mathrm{p} I} * i, \eta_{23}\left(\mathfrak{p}_{i}\right)=2.47 / \varphi_{\mathrm{pR}}+2.59 / \varphi_{\mathrm{p} I} * i \\
\mu_{11}\left(\mathfrak{p}_{i}\right)=1.01 * \mathfrak{p}_{i}, \mu_{21}\left(\mathfrak{p}_{i}\right)=0.99 * \mathfrak{p}_{i}, \mu_{12}\left(\mathfrak{p}_{i}\right)=0.98 * \mathfrak{p}_{i}, \mu_{22}\left(\mathfrak{p}_{i}\right)=0.99 * \mathfrak{p}_{i}, \mu_{13}\left(\mathfrak{p}_{i}\right)=1.26 * \mathfrak{p}_{i}, \\
\mu_{23}\left(\mathfrak{p}_{i}\right)=0.91 * \mathfrak{p}_{i}, f_{j}\left(\mathfrak{p}_{j}\right)=1.1 * \tanh \left(\mathfrak{p}_{i}^{R}\right)+2.9 * \tanh \left(\mathfrak{p}_{i}^{\prime}\right) * i
\end{array}\right. \\
\Rightarrow \mathcal{N}_{11}^{\eta}=2.984, \mathcal{N}_{21}^{\eta}=3.012, \mathcal{N}_{12}^{\eta}=3.691, \mathcal{N}_{22}^{\eta}=3.762, \mathcal{N}_{13}^{\eta}=2.956, \mathcal{N}_{23}^{\eta}=3.663, \mathcal{I}_{11}^{\eta}=2.11, \mathcal{I}_{21}^{\eta}=2.13,
\end{array}\right\} \begin{aligned}
& \mathcal{I}_{12}^{\eta}=2.61, \mathcal{I}_{22}^{\eta}=2.66, \mathcal{I}_{13}^{\eta}=2.09, \mathcal{I}_{23}^{\eta}=2.59, \mathcal{I}_{11}^{\eta \mu}=6.3130, \mathcal{I}_{21}^{\eta \mu}=6.2495, \mathcal{I}_{12}^{\eta \mu}=7.6149, \mathcal{I}_{22}^{\eta \mu}=7.8215,
\end{aligned} \mathcal{I}_{13}^{\eta \mu}=7.8442, \mathcal{I}_{23}^{\eta \mu}=6.9862, \mathcal{N}_{j}^{f}=4.101, \mathcal{I}_{j}^{f}=2.9 ;, ~ \$
$$

Discrete time delay, external interference, and reaction-diffusion coefficient are shown below:

$$
\tau_{i}(t)=0.9+0.2 * \sin (t) \Rightarrow \tau=1.1, \theta_{i}=0.01,[-1,1] \Rightarrow \ell=1, J_{1}=-0.36+1.98 i, J_{2}=0.51-1.99 i, J_{3}=-0.68-2.16 i .
$$

In this paper, ε, a are used to represent the Markovian process and the connection weight switching respectively. Define $\Phi_{s a}(\Phi=A, B ; \varepsilon=1,2 ; a=1,2), \quad \Im=8.5$ and specific values are as follows:

$$
\begin{aligned}
& A_{11}=\left[\begin{array}{ccc}
0.78+0.65 i & -0.32+0.51 i & -0.53+0.61 i \\
-0.66-0.62 i & 1.05+1.83 i & -0.84+1.43 i \\
0.53+0.62 i & -0.77+0.86 i & 0.71-0.62 i
\end{array}\right] A_{12}=\left[\begin{array}{ccc}
0.82+0.67 i & -0.52+0.61 i & -0.35+0.21 i \\
-0.76-0.63 i & 0.99+0.97 i & -0.65+0.61 i \\
0.65+0.64 i & -0.68+0.93 i & 0.61-0.78 i
\end{array}\right] \\
& A_{21}=\left[\begin{array}{ccc}
0.75+0.87 i & -0.73+0.77 i & -0.44+0.32 i \\
-0.75-0.81 i & 0.95+1.64 i & -0.82+1.05 i \\
0.88+0.44 i & -0.71+0.88 i & 0.54-0.74 i
\end{array}\right] A_{22}=\left[\begin{array}{ccc}
0.86+0.76 i & -0.81+0.87 i & -0.27+0.65 i \\
-0.85+0.77 i & 0.81+1.41 i & -0.83+0.77 i \\
0.62+0.73 i & -0.31+1.31 i & 0.52-0.51 i
\end{array}\right] \\
& B_{11}=\left[\begin{array}{ccc}
0.71+0.64 i & 1.35+1.23 i & 0.28-0.35 i \\
-0.69+0.83 i & -1.72+1.64 i & 1.72-1.64 i \\
1.54-1.41 i & 2.43+2.01 i & 1.64+1.33 i
\end{array}\right] \quad B_{12}=\left[\begin{array}{ccc}
0.73+0.84 i & 1.28+1.51 i & 0.21-0.44 i \\
-0.88+0.91 i & -1.79+1.78 i & 1.93-1.87 i \\
1.66-1.52 i & 2.23+2.27 i & 1.45+1.12 i
\end{array}\right] \\
& B_{21}=\left[\begin{array}{ccc}
0.82+0.66 i & 1.02+1.43 i & 0.37-0.54 i \\
-1.68+0.81 i & -1.88+1.76 i & 1.86-1.75 i \\
1.13-1.32 i & 2.43+2.24 i & 1.57+1.54 i
\end{array}\right] \quad B_{22}=\left[\begin{array}{ccc}
0.57+0.46 i & 1.41+1.13 i & 0.24-0.64 i \\
-1.82+0.94 i & -1.87+1.78 i & 0.69-1.34 i \\
1.05-1.44 i & 2.51+2.35 i & 1.46+1.34 i
\end{array}\right]
\end{aligned}
$$

In order to show clearly the switching function of the connection coefficient of the model in this paper, the four possibilities of switching correspond to the numbers $1,2,3$, and 4 respectively, and then the spatial position 0 is analyzed, and the partial coefficient switching can be obtained as shown in Figure 1 :

Figure 1. Partial connection weight switch

Figure 1 shows that there are frequent switching of system modes within 30 seconds, which is consistent with the actual modeling. Under the above parameter conditions, the real and imaginary parts trajectories and Markovian switching process as follow:

Figure 2. The Markovian process and chaotic attractors

Considering the response system (6), the error open-loop trajectories as shown in Figure 3:

Figure 3. The Open-loop error trajectories

It can be obtained by calculating the parameter conditions in theorem 1:

$$
\Pi_{\varepsilon i}=\left[\begin{array}{ll}
7.5 & 30.8 \\
43.8 & 22.3
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
\phi_{1}=22 \\
\phi_{2}=16
\end{array}=, \mathcal{T}_{\varepsilon i}=\left[\begin{array}{ll}
4.1 & 8.1 \\
4.3 & 8.5
\end{array}\right] \Rightarrow \mathcal{T}=8.5, \Xi_{\varepsilon i}=\left[\begin{array}{ll}
30.9 & 40.8 \\
37.4 & 60.8
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
\Xi_{\varepsilon i}=\left[\begin{array}{ll}
38 & 61
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
k_{1}=49 \\
\mathcal{P}^{+}=62
\end{array}\right. \\
k_{2}=60.5
\end{array}\right.\right.
$$

The control time corresponding to the intermittent controller designed in this paper is not arbitrarily given,.However, it is decided by equation (15) and $\phi(\varepsilon)=\varepsilon-\mathcal{W}+\mathcal{T} e^{e \tau}=0$ together. According to Figure $4 \mathcal{W}=60, \mathcal{X}_{\text {inf }} \approx 0.9857$. Finally, the trajectory evolution of (11) is as follows:

Figure 4. The Closed-loop error trajectory
It can be seen from the figure above that the design of the aperiential intermittent pinning controller (12) is effective, and the error system (11) can be stabilized in a short time by shortening a part of the controller time and selecting a part of the controlled nodes.

5. Conclusion

In this work, the Markovian reaction-diffusion complex value CGNNs with parameter switching is proposed, the drive response system is studied directly by the method of non-separation, and the aperiodic intermittent pinning controller is designed to ensure the stability of the system. Then a suitable Lyapunov function is selected, exponential synchronization condition of the system is obtained, and the rationality of the theorem is demonstrated by numerical calculation.

References

[1] COHEN M A, GROSSBERG S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983, 13(5): 815-826.
[2] Zhu, Song, et al. "Generalized-Type Multistability of Almost Periodic Solutions for Memristive CohenGrossberg Neural Networks."IEEE Transactions on Neural Networks and Learning Systems(2023).
[3] Kong, Fanchao, Quanxin Zhu, and Hamid Reza Karimi. "Fixed-time periodic stabilization of discontinuous reaction-diffusion Cohen-Grossberg neural networks."Neural Networks166 (2023): 354365.
[4] Song, X., Man, J., Song, S., Zhang, Y., \& Ning, Z. (2020). Finite/fixed-time synchronization for Markovian complex-valued memristive neural networks with reaction-diffusion terms and its application. Neurocomputing,414, 131-142.
[5] Hirose, Akira. "Applications of complex-valued neural networks to coherent optical computing using phase-sensitive detection scheme." Information Sciences-Applications2.2 (1994): 103-117.
[6] Liu, Yufei, Bo Shen, and Jie Sun. "Stability and synchronization for complex-valued neural networks with stochastic parameters and mixed time delays."Cognitive Neurodynamics17.5 (2023): 1213-1227.
[7] Feng, Liang, et al. "Nonseparation method-based finite/fixed-time synchronization of fully complexvalued discontinuous neural networks."IEEE transactions on cybernetics51.6 (2020): 3212-3223.
[8] Cai, Shuiming, et al. "Aperiodic intermittent pinning control for exponential synchronization of memristive neural networks with time-varying delays." "Neurocomputing332 (2019): 249-258.
[9] Huang, Yanli, and Qing Hao. "Finite-time and pinning synchronization of multi-weighted delayed coupled Cohen-Grossberg neural networks."Neural Computing and Applications36.1 (2024): 483-504.
[10]Hao, Qing, and Yanli Huang. "Synchronization Analysis and Aperiodically Intermittent Synchronization Control of Multi-Weighted Coupled Cohen-Grossberg Neural Networks."2021 China Automation Congress (CAC). IEEE, 2021.
[11]Li, X., Cao, Y., Zheng, C., Feng, Z., \& Xu, G. (2022). Finite-Time Synchronization of Fractional-Order Complex-Valued Cohen-Grossberg Neural Networks with Mixed Time Delays and State-Dependent Switching. Advances in Mathematical Physics,2022.

