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Abstract 

Aiming at the problems that the classification of noisy data relies on expert knowledge 
and the processing is cumbersome, a fault diagnosis model based on the combination of 
Deep Residual Contraction Network (DRSN-CW)and Long Short-Term Memory Neural 
Network (LSTM) is proposed-Deep Residual Long Short-Term Network(DRSN-CW-LSTM). 
On the one hand, DRSN-CW extracts the spatial features of the signal while noise 
reduction, and on the other hand, LSTM extracts the temporal features of the signal, so 
that the signal can be fully extracted without the need for pre-noise reduction, and 
experimental analysis shows that the DRSN-CW-LSTM model has a better diagnostic 
performance in a strong noise environment. 

Keywords 

Fault Diagnosis; Data Acquisition; Data Noise Reduction; Deep Residual Contraction 
Network; Long and Short Term Memory Network. 

 

1. Introduction 

In the bearing fault diagnosis process, due to the complex and changing working environment around, 

mechanical equipment operation process noise and other reasons, the bearing vibration signal 

acquisition process will inevitably be collected together with the noise data, if the information 

containing noise is not appropriately processed, the algorithmic model of the final data classification 

accuracy will be greatly reduced. Deep learning can freely set the parameters of each layer, and the 

features in the data can be effectively extracted through autonomous learning, so it has been widely 

used in the field of equipment health detection and fault diagnosis. 

Zhao et al [1]proposed a sparse filtering combined with variational modal decomposition (VMD) 

method for gearbox fault diagnosis, firstly, the signal is decomposed into a set of unidirectional 

quantities by VMD, and then the instantaneous amplitude energy is computed for them, and the 

features with excellent performance are extracted by sparse filtering to improve the diagnostic 

performance of the algorithm in a noisy environment. Fan Yuxue[2]et al. solved the problem of low 

diagnostic accuracy of LSTM under small batch samples by a two-way LSTM to accomplish 

intelligent fault diagnosis for small batch samples. Li Junxing et[3]alproposed a bearing fault 

diagnosis method based on EEMD and CNN-BiLSTM, firstly, the signal is decomposed and 

reconstructed by EEMD to eliminate the noise features of the signal, then the retained feature 

information is inputted into CNN-BiLSTM for feature extraction, and finally, it is compared with 

other deep learning methods, and the results show that the method has better performance. Ke Wei et 

al[4]proposed a fault diagnosis method based on similar segmented collaborative filtering (SSCF) 

and temporal rescheduling synchronization (TSET) strategy for the problem of noise interference 
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during bearing diagnosis, and the experiments show that it has strong robustness for bearing fault 

diagnosis under strong noise environment.Zhao et al[5]proposed a bearing fault diagnosis method 

based on deep residual shrinkage network, which for the first time integrates the noise reduction 

method with neural network, and the results show that the method has better performance under the 

noise environment. noise reduction method and neural network fusion to form an integrated method 

of noise reduction and feature extraction, and validated it on a public dataset. 

The above methods only focus on one of the data spatial features or temporal features, while in the 

process of fault diagnosis of bearings, while focusing on the spatial relationship of the data, it is also 

necessary to focus on the changes of the data in the temporal dimension, for this reason, this paper 

combines the combination of the DRSN-CW and the LSTM to excavate more potential data features, 

in order to improve the model's accuracy of the fault diagnosis in the presence of strong noise. 

2. Overall Model Architecture and Principles 

Aiming at the limitations of the single network model to identify faults, the insufficient utilization of 

the dynamic time-series characteristics of the data, and the cumbersome processing of strongly noisy 

data, the DRSN-CW-LSTM fault diagnosis method is proposed, which contains three modules, 

namely, data preprocessing, feature extraction, and data visualization. The first part is the data 

preprocessing module, which slices the samples by non-overlapping sampling. The second part is the 

feature extraction module, which consists of the DRSN-CW and LSTM modules, using the small sub-

network of the residual contraction block in the DRSN-CW to adaptively set the threshold for the 

feature map, carry out the noise reduction of the signal, and complete the spatial feature extraction of 

the signal through the convolution, pooling, and batch normalization operations in the deep residual 

contraction module, and then take advantage of the processing of the temporal data in the LSTM, to 

complete the extraction of the signal timing features. Then use the advantage of LSTM to process 

temporal data to complete the extraction of signal temporal features. Finally, the results are output 

and visualized. The overall architecture of the model is shown in Fig. 1.  
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Fig.1 Overall Model Architecture 

2.1 Spatial Feature Extraction for Deep Residual Contraction Networks 

DRSN is a deep learning algorithm that combines signal soft-threshold noise reduction method, 

residual learning method and deep neural network proposed by Minghang Zhao et al [5] in 2020, 

including DRSN-CW and DRSN-CS. DRSN-CW performs feature shrinkage by adaptively setting 

different thresholds for the feature maps of different channels, so for the signals contaminated by 
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noise, DRSN-CW has a In addition, the residual contraction module in DRSN-CW reduces one step 

of averaging operation than that in DRSN-CS, which makes the residual module in DRSN-CW 

faster.The residual contraction in DRSN-CS and DRSN-CW are respectively the shared threshold 

residual contraction unit (RSBU-CS) and the different threshold residual contraction unit (RSBU-CS) 

among channels and the different threshold residual contraction unit (RSBU-CS) among channels. 

threshold residual contraction unit (RSBU-CW), and the structure of RSBU-CW is shown in Fig. 2. 

Therefore, the article adopts DRSN-CW network with better average accuracy and less computing 

time for signal spatial feature extraction. 
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Fig.2 RSBU-CW structure diagram 

 

RSBU-CW working principle: assuming that the input shape of the feature map is C*W*1, where C 

and W*1 are the number of channels and the size of the input feature map, the feature map is input 

into the residual shrinkage module and then two convolution operations are performed to get the 

output feature map after convolution, and then the absolute value of the output feature map is obtained 

by global average pooling (GAP) to get C one-dimensional feature vectors, i.e., the feature map of 

C*1*1; in another path, the GAP features are input into a small fully connected subnetwork, and a 

scaled parameter is obtained by nonlinear transformation with the fully connected and activation 

functions. of the feature map; in the other path, the features after GAP are input to a small fully 

connected sub-network, which is nonlinearly transformed by the fully connected and activation 

functions to obtain a scaled parameter, and the output is adjusted to a number between 0 and 1 by a 

Sigmoid function denoted as α; and then a number between 0 and 1 is multiplied by the average of 

the absolute values of the feature maps, i.e., A * α to obtain the final threshold value. Finally, the 

signal noise reduction features obtained from soft thresholding are associated with the input features 

through residual linking to complete residual learning. The difference with RSBU-CS is that RSBU-

CW has no demand averaging operation and the rest of the operations are the same.The computation 

of the threshold value in RSBU-CW is calculated as shown in equation (1): 

 

𝜏𝑐 =
1

1 + 𝑒−𝑧𝑐
∗ |𝑥𝑖,𝑗,𝑐| (1) 

 

Where 𝜏𝑐represents the result of soft thresholding, 𝑧𝑐is the output of the cth neuron of the second 

fully connected layer, 1/(1 + 𝑒−𝑧𝑐) is the result of the scaling of the second fully connected layer 

by the Sigmoid activation function, i, j, and c represent the length and width and the number of 

channels of the feature maps of the second convolutional layer, respectively, 𝑥𝑖,𝑗,𝑐 is the output of 

the cth channel of the second convolutional layer. 

2.2 Temporal Feature Extraction for Long and Short-term Memory Networks 

LSTM, as a variant of recurrent reach-in network (RNN), solves the gradient vanishing and gradient 

exploding problems of the original RNN through the unique gate mechanism and memory cells to 

learn the long-term dependent information at the same time, LSTM judges the input data through its 
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gating unit, leaving the data that conforms to the rules, and forgetting the data that doesn't conform 

to the rules, and the internal neuron structure of the LSTM is shown in Fig. 3. 

 

 

Fig.3 Internal neuronal structure of LSMT 

 

LSTM updates the state of the current "cell" through three gating information: input gate, forgetting 

gate and output gate. Firstly, LSTM selectively forgets the output information of the previous cell 

through the forgetting gate, and decides the information to be discarded by calculating Ft, and finally 

outputs the final state of the current neuron under the calculation of the output gate. result, the 

mathematical expression is shown in equation (2). 

 

𝐻𝑡 = 𝑂𝑡 ⋅ 𝑡𝑎𝑛ℎ( 𝐶𝑡−1 ⋅ 𝐹𝑡 + 𝐶𝑡−1
~

⋅ 𝐼𝑡) (2) 

 

Where 𝐹𝑡, 𝐼𝑡, 𝑂𝑡, 𝐶𝑡, 𝐶𝑡
~

represent the forgetting gate, the input gate, the output gate, the output of 

the candidate "cell" and the memory "cell" after computation, respectively, and t and t-1 represent the 

current and previous moments, respectively. The feature map to be computed is input to the LSTM 

according to a certain format, and the temporal features of the data are extracted step by step by 

forward propagation of the LSTM. 

3. Experimentation and Analysis 

3.1 Data Description 

Table 1. data set component 

Fault type 
SNR 

-10 -8 -6 0 

normal 488 488 488 488 

Bearing inner ring 488 488 488 488 

Bearing outer ring 488 488 488 488 

Rolling body failure 488 488 488 488 

 

In order to verify the performance of the improved DRSN-CW algorithm, it is verified by the data set 

of Jiangnan University, which is divided into four categories of faults, namely: normal, bearing inner 

ring faults, bearing outer ring faults, and rolling body faults. The data points of each fault category 
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are half a million, and the data points are sampled by non-overlapping sampling, with 1024 data 

points as a set of samples, which are divided into training samples and test samples according to the 

ratio of 7:3. The data set components are shown in Table 1. 

In the experiment, in order to restore the noise information generated during the operation of the 

machine and to verify the noise immunity of the model, so different levels of Gaussian noise are 

introduced into the signal to generate noise signals with different signal-to-noise ratios, and the signal-

to-noise ratio formula and the probability density expression of the Gaussian distribution are shown 

in Equation (3)and(4):  

 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) (3) 

 

𝐹(𝑥) =
1

√2𝜋𝜎
exp⁡(−

(𝑥 − 𝜇)2

2𝜎2
) (4) 

 

Where, SNR is the calculated signal-to-noise ratio, and P_signal and P_noise represent the power of 

signal and noise, 𝜎 , 𝜇 , and 𝑥  represent the standard deviation, mean, and random variable, 

respectively. Here five different groups of noise samples are generated on the original signal, and the 

signal-to-noise ratios of the signals are -6dB, -8dB and -10dB, respectively. Taking the vibration 

signals of the bearing inner ring failure as an example, 20,000 vibration sample points are selected, 

and the signal pairs of their different signal-to-noise ratios are shown in Fig. 4. It can be seen that, 

with the increase of noise content, the vibration signal of the multiple impact signal is flooded by 

impulse noise, it is difficult to identify the periodic components of the vibration signal, resulting in 

difficulties in signal feature extraction. 

 

 

 

Fig.4 Effect of different signal-to-noise ratios on the signal 

3.2 Comparative Analysis of Experiments 

In order to verify the advantages of the algorithms in strong noise environments, the article selects 

the following three data classification algorithms to compare ResNet34, LSTM and DRSN-CW. A 

single model is used to compare the algorithmic effects of model fusion in order to validate the 

advantages of model fusion in data classification. 

(1) Diagnostic results of each model in different noise environments 

The diagnostic results of the DRSN-CW-LSTM model and the existing algorithm model at different 

SNRs are shown in Table 3-2. The accuracy is obtained by repeating the experiment five times to 

take its average value, in the case of the original data to SNR=-10dB, that is, the noise content 

gradually increases, the average accuracy of the DRSN-CW-LSTM model in the training set 

decreases from 99.51% to 95.47%, and with the increase of the noise content, the model's accuracy 
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also decreases, but the result is still satisfactory, and the noise reduction in the signal of the signal 

while extracting the features of the signal, so the model has a stronger feature extraction ability in 

strong noise environments. 

 

Table 2. Average Accuracy of Test Sets for Different Models at Different Signal-to-Noise 

Ratios(%) 

algorithmic model Origin data SNR=-6 SNR=-8 SNR=-10 

ResNet34 94.66 89.57 87.55 84.55 

LSTM 92.72 84.22 84.54 82.32 

DRSN-CW 97.35 94.57 93.68 93.15 

DRSN-CW-LSTM 99.51 98.26 96.54 95.47 

 

(2) Visualization results of different models in strong noise environment 

The diagnostic accuracies of the different models in the training and test sets in a strong noise 

environment with a noise of -10dB are shown in Fig. 5. It can be seen that the accuracy of the DRSN-

CW-LSTM model is higher than the other three models in both the training and test sets in a strong 

noise environment, and the diagnostic effect of DRSN-CW is only second to that of DRSN-CW-

LSTM because of the soft-thresholding operation contained in DRSN-CW itself, so the robustness of 

the DRSN-CW-LSTM model for the feature extraction of noisy signals is better. 

 

 

Fig.5 Test and training set accuracy curves for different models with S/N ratio = -10 

4. Generalize 

In this paper, for the problem of fault diagnosis under strong noise environment, we propose a servo 

motor fault diagnosis model that can be fully extracted with adaptive noise reduction + features under 

strong noise environment. Finally, the effectiveness of the algorithm model is verified by 

experimentally comparing and analyzing the data recognition accuracy and misclassification of 

different models under different noise, different models under the same level of noise, and the method 

of this paper under strong noise. 
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